47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464 | class Workflow(metaclass=WorkflowMeta):
"""
Event-driven orchestrator to define and run application flows using typed steps.
A `Workflow` is composed of `@step`-decorated callables that accept and emit
typed [Event][workflows.events.Event]s. Steps can be declared as instance
methods or as free functions registered via the decorator.
Key features:
- Validation of step signatures and event graph before running
- Typed start/stop events
- Streaming of intermediate events
- Optional human-in-the-loop events
- Retry policies per step
- Resource injection
Examples:
Basic usage:
```python
from workflows import Workflow, step
from workflows.events import StartEvent, StopEvent
class MyFlow(Workflow):
@step
async def start(self, ev: StartEvent) -> StopEvent:
return StopEvent(result="done")
result = await MyFlow(timeout=60).run(topic="Pirates")
```
Custom start/stop events and streaming:
```python
handler = MyFlow().run()
async for ev in handler.stream_events():
...
result = await handler
```
See Also:
- [step][workflows.decorators.step]
- [Event][workflows.events.Event]
- [Context][workflows.context.context.Context]
- [WorkflowHandler][workflows.handler.WorkflowHandler]
- [RetryPolicy][workflows.retry_policy.RetryPolicy]
"""
# Populated by the metaclass; declared here for type checkers.
_step_functions: dict[str, StepFunction]
def __init__(
self,
timeout: float | None = 45.0,
disable_validation: bool = False,
verbose: bool = False,
resource_manager: ResourceManager | None = None,
num_concurrent_runs: int | None = None,
) -> None:
"""
Initialize a workflow instance.
Args:
timeout (float | None): Max seconds to wait for completion. `None`
disables the timeout.
disable_validation (bool): Skip pre-run validation of the event graph
(not recommended).
verbose (bool): If True, print step activity.
resource_manager (ResourceManager | None): Custom resource manager
for dependency injection.
num_concurrent_runs (int | None): Limit on concurrent `run()` calls.
"""
# Configuration
self._timeout = timeout
self._verbose = verbose
self._disable_validation = disable_validation
self._num_concurrent_runs = num_concurrent_runs
# Detect StartEvent issues before StopEvent for clearer guidance
self._start_event_class = self._ensure_start_event_class()
self._stop_event_class = self._ensure_stop_event_class()
self._events = self._ensure_events_collected()
self._sem = (
asyncio.Semaphore(num_concurrent_runs) if num_concurrent_runs else None
)
# Resource management
self._resource_manager = resource_manager or ResourceManager()
# Instrumentation
self._dispatcher = dispatcher
def _ensure_start_event_class(self) -> type[StartEvent]:
"""
Returns the StartEvent type used in this workflow.
It works by inspecting the events received by the step methods.
"""
start_events_found: set[type[StartEvent]] = set()
for step_func in self._get_steps().values():
step_config: StepConfig = step_func._step_config
for event_type in step_config.accepted_events:
if issubclass(event_type, StartEvent):
start_events_found.add(event_type)
num_found = len(start_events_found)
if num_found == 0:
cls_name = self.__class__.__name__
msg = (
"At least one Event of type StartEvent must be received by any step. "
f"(Workflow '{cls_name}' has no @step that accepts StartEvent.)"
)
raise WorkflowConfigurationError(msg)
elif num_found > 1:
cls_name = self.__class__.__name__
msg = (
f"Only one type of StartEvent is allowed per workflow, found {num_found}: {start_events_found} "
f"in workflow '{cls_name}'."
)
raise WorkflowConfigurationError(msg)
else:
return start_events_found.pop()
@property
def start_event_class(self) -> type[StartEvent]:
"""The `StartEvent` subclass accepted by this workflow.
Determined by inspecting step input types.
"""
return self._start_event_class
@property
def events(self) -> list[type[Event]]:
"""Returns all known events emitted by this workflow.
Determined by inspecting step input/output types.
"""
return self._events
def _ensure_events_collected(self) -> list[type[Event]]:
"""Returns all known events emitted by this workflow.
Determined by inspecting step input/output types.
"""
events_found: set[type[Event]] = set()
for step_func in self._get_steps().values():
step_config: StepConfig = step_func._step_config
# Do not collect events from the done step
if step_func.__name__ == "_done":
continue
for event_type in step_config.return_types:
if issubclass(event_type, Event):
events_found.add(event_type)
for event_type in step_config.accepted_events:
if issubclass(event_type, Event):
events_found.add(event_type)
return list(events_found)
def _ensure_stop_event_class(self) -> type[RunResultT]:
"""
Returns the StopEvent type used in this workflow.
It works by inspecting the events returned.
"""
stop_events_found: set[type[StopEvent]] = set()
for step_func in self._get_steps().values():
step_config: StepConfig = step_func._step_config
for event_type in step_config.return_types:
if issubclass(event_type, StopEvent):
stop_events_found.add(event_type)
num_found = len(stop_events_found)
if num_found == 0:
cls_name = self.__class__.__name__
msg = (
"At least one Event of type StopEvent must be returned by any step. "
f"(Workflow '{cls_name}' has no @step that returns StopEvent.)"
)
raise WorkflowConfigurationError(msg)
elif num_found > 1:
cls_name = self.__class__.__name__
msg = (
f"Only one type of StopEvent is allowed per workflow, found {num_found}: {stop_events_found} "
f"in workflow '{cls_name}'."
)
raise WorkflowConfigurationError(msg)
else:
return stop_events_found.pop()
@property
def stop_event_class(self) -> type[RunResultT]:
"""The `StopEvent` subclass produced by this workflow.
Determined by inspecting step return annotations.
"""
return self._stop_event_class
@classmethod
def add_step(cls, func: StepFunction) -> None:
"""
Adds a free function as step for this workflow instance.
It raises an exception if a step with the same name was already added to the workflow.
"""
step_config: StepConfig | None = getattr(func, "_step_config", None)
if not step_config:
msg = f"Step function {func.__name__} is missing the `@step` decorator."
raise WorkflowValidationError(msg)
if func.__name__ in {**get_steps_from_class(cls), **cls._step_functions}:
msg = f"A step {func.__name__} is already part of this workflow, please choose another name."
raise WorkflowValidationError(msg)
cls._step_functions[func.__name__] = func
def _get_steps(self) -> dict[str, StepFunction]:
"""Returns all the steps, whether defined as methods or free functions."""
return {**get_steps_from_instance(self), **self.__class__._step_functions}
def _get_start_event_instance(
self, start_event: StartEvent | None, **kwargs: Any
) -> StartEvent:
if start_event is not None:
# start_event was used wrong
if not isinstance(start_event, StartEvent):
msg = "The 'start_event' argument must be an instance of 'StartEvent'."
raise ValueError(msg)
# start_event is ok but point out that additional kwargs will be ignored in this case
if kwargs:
msg = (
"Keyword arguments are not supported when 'run()' is invoked with the 'start_event' parameter."
f" These keyword arguments will be ignored: {kwargs}"
)
logger.warning(msg)
return start_event
# Old style start event creation, with kwargs used to create an instance of self._start_event_class
try:
return self._start_event_class(**kwargs)
except ValidationError as e:
ev_name = self._start_event_class.__name__
msg = f"Failed creating a start event of type '{ev_name}' with the keyword arguments: {kwargs}"
logger.debug(e)
raise WorkflowRuntimeError(msg)
@dispatcher.span
def run(
self,
ctx: Context | None = None,
start_event: StartEvent | None = None,
**kwargs: Any,
) -> WorkflowHandler:
"""Run the workflow and return a handler for results and streaming.
This schedules the workflow execution in the background and returns a
[WorkflowHandler][workflows.handler.WorkflowHandler] that can be awaited
for the final result or used to stream intermediate events.
You may pass either a concrete `start_event` instance or keyword
arguments that will be used to construct the inferred
[StartEvent][workflows.events.StartEvent] subclass.
Args:
ctx (Context | None): Optional context to resume or share state
across runs. If omitted, a fresh context is created.
start_event (StartEvent | None): Optional explicit start event.
**kwargs (Any): Keyword args to initialize the start event when
`start_event` is not provided.
Returns:
WorkflowHandler: A future-like object to await the final result and
stream events.
Raises:
WorkflowValidationError: If validation fails and validation is
enabled.
WorkflowRuntimeError: If the start event cannot be created from kwargs.
WorkflowTimeoutError: If execution exceeds the configured timeout.
Examples:
```python
# Create and run with kwargs
handler = MyFlow().run(topic="Pirates")
# Stream events
async for ev in handler.stream_events():
...
# Await final result
result = await handler
```
If you subclassed the start event, you can also directly pass it in:
```python
result = await my_workflow.run(start_event=MyStartEvent(topic="Pirates"))
```
"""
from workflows.context import Context
# Validate the workflow
self._validate()
# If a previous context is provided, pass its serialized form
ctx = ctx if ctx is not None else Context(self)
start_event_instance: StartEvent | None = (
None
if ctx.is_running
else self._get_start_event_instance(start_event, **kwargs)
)
return ctx._workflow_run(
workflow=self, start_event=start_event_instance, semaphore=self._sem
)
def validate(self) -> bool:
"""
Validate the workflow to ensure it's well-formed.
Returns True if the workflow uses human-in-the-loop, False otherwise.
"""
return self._validate()
def _validate(self) -> bool:
if self._disable_validation:
return False
# Ensure at least one step is configured before inspecting events
if not self._get_steps():
cls_name = self.__class__.__name__
msg = (
f"Workflow '{cls_name}' has no configured steps. "
"Did you forget to annotate methods with @step or to register "
"free-function steps via @step(workflow=...)?"
)
raise WorkflowConfigurationError(msg)
# Recompute StartEvent and StopEvent classes here to support dynamic changes
# and to surface StartEvent errors before StopEvent during validation.
self._start_event_class = self._ensure_start_event_class()
self._stop_event_class = self._ensure_stop_event_class()
produced_events: set[type] = {self._start_event_class}
consumed_events: set[type] = set()
# Collect steps that incorrectly accept StopEvent
steps_accepting_stop_event: list[str] = []
for name, step_func in self._get_steps().items():
step_config: StepConfig = step_func._step_config
# Check that no user-defined step accepts StopEvent (only _done step should)
if name != "_done":
for event_type in step_config.accepted_events:
if issubclass(event_type, StopEvent):
steps_accepting_stop_event.append(name)
break
for event_type in step_config.accepted_events:
consumed_events.add(event_type)
for event_type in step_config.return_types:
if event_type is type(None):
# some events may not trigger other events
continue
produced_events.add(event_type)
# Raise error if any steps incorrectly accept StopEvent
if steps_accepting_stop_event:
step_names = "', '".join(steps_accepting_stop_event)
plural = "" if len(steps_accepting_stop_event) == 1 else "s"
msg = f"Step{plural} '{step_names}' cannot accept StopEvent. StopEvent signals the end of the workflow. Use a different Event type instead."
raise WorkflowValidationError(msg)
# Check if no StopEvent is produced
stop_ok = False
for ev in produced_events:
if issubclass(ev, StopEvent):
stop_ok = True
break
if not stop_ok:
msg = "No event of type StopEvent is produced."
raise WorkflowValidationError(msg)
# Check if all consumed events are produced (except specific built-in events)
unconsumed_events = consumed_events - produced_events
unconsumed_events = {
x
for x in unconsumed_events
if not issubclass(x, (InputRequiredEvent, HumanResponseEvent, StopEvent))
}
if unconsumed_events:
names = ", ".join(ev.__name__ for ev in unconsumed_events)
raise WorkflowValidationError(
f"The following events are consumed but never produced: {names}"
)
# Check if there are any unused produced events (except specific built-in events)
unused_events = produced_events - consumed_events
unused_events = {
x
for x in unused_events
if not issubclass(
x, (InputRequiredEvent, HumanResponseEvent, self._stop_event_class)
)
}
if unused_events:
names = ", ".join(ev.__name__ for ev in unused_events)
raise WorkflowValidationError(
f"The following events are produced but never consumed: {names}"
)
# Check if the workflow uses human-in-the-loop
return (
InputRequiredEvent in produced_events
or HumanResponseEvent in consumed_events
)
|