numpy.bitwise_or#

numpy.bitwise_or(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) = <ufunc 'bitwise_or'>#

计算两个数组元素按位的或运算.

计算输入数组中整数的二进制表示的按位或.此 ufunc 实现了 C/Python 运算符 |.

参数:
x1, x2array_like

只处理整数和布尔类型.如果 x1.shape != x2.shape,它们必须能够广播到一个共同的形状(这将成为输出形状).

outndarray, None, 或 ndarray 和 None 的元组, 可选

存储结果的位置.如果提供,它必须具有与输入广播的形状.如果未提供或为 None,则返回一个新分配的数组.元组(只能作为关键字参数)的长度必须等于输出的数量.

wherearray_like, 可选

这个条件通过输入进行广播.在条件为 True 的位置,`out` 数组将被设置为 ufunc 结果.在其他地方,`out` 数组将保留其原始值.注意,如果通过默认的 out=None 创建了一个未初始化的 out 数组,条件为 False 的位置将保持未初始化状态.

**kwargs

对于其他仅限关键字的参数,请参阅 ufunc 文档.

返回:
outndarray 或标量

结果.如果 x1x2 都是标量,则这是一个标量.

参见

logical_or
bitwise_and
bitwise_xor
binary_repr

返回输入数字的二进制表示形式作为字符串.

示例

>>> import numpy as np

数字 13 的二进制表示是 00001101.同样地,16 由 00010000 表示.13 和 16 的按位或运算结果是 00011101,即 29:

>>> np.bitwise_or(13, 16)
29
>>> np.binary_repr(29)
'11101'
>>> np.bitwise_or(32, 2)
34
>>> np.bitwise_or([33, 4], 1)
array([33,  5])
>>> np.bitwise_or([33, 4], [1, 2])
array([33,  6])
>>> np.bitwise_or(np.array([2, 5, 255]), np.array([4, 4, 4]))
array([  6,   5, 255])
>>> np.array([2, 5, 255]) | np.array([4, 4, 4])
array([  6,   5, 255])
>>> np.bitwise_or(np.array([2, 5, 255, 2147483647], dtype=np.int32),
...               np.array([4, 4, 4, 2147483647], dtype=np.int32))
array([         6,          5,        255, 2147483647], dtype=int32)
>>> np.bitwise_or([True, True], [False, True])
array([ True,  True])

| 运算符可以用作 ndarrays 上 np.bitwise_or 的简写.

>>> x1 = np.array([2, 5, 255])
>>> x2 = np.array([4, 4, 4])
>>> x1 | x2
array([  6,   5, 255])