跳至内容

Items

TResponse module-attribute

TResponse = Response

OpenAI SDK中Response类型的类型别名。

TResponseInputItem module-attribute

TResponseInputItem = ResponseInputItemParam

OpenAI SDK中ResponseInputItemParam类型的类型别名。

TResponseOutputItem module-attribute

TResponseOutputItem = ResponseOutputItem

OpenAI SDK中ResponseOutputItem类型的类型别名。

TResponseStreamEvent module-attribute

TResponseStreamEvent = ResponseStreamEvent

OpenAI SDK中ResponseStreamEvent类型的类型别名。

ToolCallItemTypes module-attribute

ToolCallItemTypes: TypeAlias = Union[
    ResponseFunctionToolCall,
    ResponseComputerToolCall,
    ResponseFileSearchToolCall,
    ResponseFunctionWebSearch,
]

表示工具调用项的类型。

运行项 module-attribute

由代理生成的条目。

RunItemBase dataclass

基类: Generic[T], ABC

Source code in src/agents/items.py
@dataclass
class RunItemBase(Generic[T], abc.ABC):
    agent: Agent[Any]
    """The agent whose run caused this item to be generated."""

    raw_item: T
    """The raw Responses item from the run. This will always be a either an output item (i.e.
    `openai.types.responses.ResponseOutputItem` or an input item
    (i.e. `openai.types.responses.ResponseInputItemParam`).
    """

    def to_input_item(self) -> TResponseInputItem:
        """Converts this item into an input item suitable for passing to the model."""
        if isinstance(self.raw_item, dict):
            # We know that input items are dicts, so we can ignore the type error
            return self.raw_item  # type: ignore
        elif isinstance(self.raw_item, BaseModel):
            # All output items are Pydantic models that can be converted to input items.
            return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
        else:
            raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

代理 instance-attribute

agent: Agent[Any]

生成此项目的代理运行。

原始数据项 instance-attribute

raw_item: T

运行中的原始响应项。这将始终是一个输出项(即openai.types.responses.ResponseOutputItem)或一个输入项(即openai.types.responses.ResponseInputItemParam)。

to_input_item

to_input_item() -> TResponseInputItem

将此项目转换为适合传递给模型的输入项目。

Source code in src/agents/items.py
def to_input_item(self) -> TResponseInputItem:
    """Converts this item into an input item suitable for passing to the model."""
    if isinstance(self.raw_item, dict):
        # We know that input items are dicts, so we can ignore the type error
        return self.raw_item  # type: ignore
    elif isinstance(self.raw_item, BaseModel):
        # All output items are Pydantic models that can be converted to input items.
        return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
    else:
        raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

消息输出项 dataclass

基类: RunItemBase[ResponseOutputMessage]

表示来自LLM的消息。

Source code in src/agents/items.py
@dataclass
class MessageOutputItem(RunItemBase[ResponseOutputMessage]):
    """Represents a message from the LLM."""

    raw_item: ResponseOutputMessage
    """The raw response output message."""

    type: Literal["message_output_item"] = "message_output_item"

代理 instance-attribute

agent: Agent[Any]

生成此项目的代理运行。

原始项 instance-attribute

raw_item: ResponseOutputMessage

原始响应输出消息。

to_input_item

to_input_item() -> TResponseInputItem

将此项目转换为适合传递给模型的输入项目。

Source code in src/agents/items.py
def to_input_item(self) -> TResponseInputItem:
    """Converts this item into an input item suitable for passing to the model."""
    if isinstance(self.raw_item, dict):
        # We know that input items are dicts, so we can ignore the type error
        return self.raw_item  # type: ignore
    elif isinstance(self.raw_item, BaseModel):
        # All output items are Pydantic models that can be converted to input items.
        return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
    else:
        raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

HandoffCallItem dataclass

基类: RunItemBase[ResponseFunctionToolCall]

表示一个工具调用,用于从一个智能体交接给另一个智能体。

Source code in src/agents/items.py
@dataclass
class HandoffCallItem(RunItemBase[ResponseFunctionToolCall]):
    """Represents a tool call for a handoff from one agent to another."""

    raw_item: ResponseFunctionToolCall
    """The raw response function tool call that represents the handoff."""

    type: Literal["handoff_call_item"] = "handoff_call_item"

代理 instance-attribute

agent: Agent[Any]

生成此项目的代理运行。

原始项目 instance-attribute

raw_item: ResponseFunctionToolCall

表示交接的原始响应函数工具调用。

to_input_item

to_input_item() -> TResponseInputItem

将此项目转换为适合传递给模型的输入项目。

Source code in src/agents/items.py
def to_input_item(self) -> TResponseInputItem:
    """Converts this item into an input item suitable for passing to the model."""
    if isinstance(self.raw_item, dict):
        # We know that input items are dicts, so we can ignore the type error
        return self.raw_item  # type: ignore
    elif isinstance(self.raw_item, BaseModel):
        # All output items are Pydantic models that can be converted to input items.
        return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
    else:
        raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

交接输出项 dataclass

基类:RunItemBase[TResponseInputItem]

表示交接的输出结果。

Source code in src/agents/items.py
@dataclass
class HandoffOutputItem(RunItemBase[TResponseInputItem]):
    """Represents the output of a handoff."""

    raw_item: TResponseInputItem
    """The raw input item that represents the handoff taking place."""

    source_agent: Agent[Any]
    """The agent that made the handoff."""

    target_agent: Agent[Any]
    """The agent that is being handed off to."""

    type: Literal["handoff_output_item"] = "handoff_output_item"

代理 instance-attribute

agent: Agent[Any]

生成此项目的代理运行。

原始数据项 instance-attribute

表示交接发生的原始输入项。

source_agent instance-attribute

source_agent: Agent[Any]

执行交接的代理程序。

目标代理 instance-attribute

target_agent: Agent[Any]

正在移交的代理。

to_input_item

to_input_item() -> TResponseInputItem

将此项目转换为适合传递给模型的输入项目。

Source code in src/agents/items.py
def to_input_item(self) -> TResponseInputItem:
    """Converts this item into an input item suitable for passing to the model."""
    if isinstance(self.raw_item, dict):
        # We know that input items are dicts, so we can ignore the type error
        return self.raw_item  # type: ignore
    elif isinstance(self.raw_item, BaseModel):
        # All output items are Pydantic models that can be converted to input items.
        return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
    else:
        raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

ToolCallItem dataclass

基类:RunItemBase[ToolCallItemTypes]

表示一个工具调用,例如函数调用或计算机操作调用。

Source code in src/agents/items.py
@dataclass
class ToolCallItem(RunItemBase[ToolCallItemTypes]):
    """Represents a tool call e.g. a function call or computer action call."""

    raw_item: ToolCallItemTypes
    """The raw tool call item."""

    type: Literal["tool_call_item"] = "tool_call_item"

代理 instance-attribute

agent: Agent[Any]

生成此项目的代理运行。

原始项目 instance-attribute

原始工具调用项。

to_input_item

to_input_item() -> TResponseInputItem

将此项目转换为适合传递给模型的输入项目。

Source code in src/agents/items.py
def to_input_item(self) -> TResponseInputItem:
    """Converts this item into an input item suitable for passing to the model."""
    if isinstance(self.raw_item, dict):
        # We know that input items are dicts, so we can ignore the type error
        return self.raw_item  # type: ignore
    elif isinstance(self.raw_item, BaseModel):
        # All output items are Pydantic models that can be converted to input items.
        return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
    else:
        raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

工具调用输出项 dataclass

基类: RunItemBase[Union[FunctionCallOutput, ComputerCallOutput]]

表示工具调用的输出。

Source code in src/agents/items.py
@dataclass
class ToolCallOutputItem(RunItemBase[Union[FunctionCallOutput, ComputerCallOutput]]):
    """Represents the output of a tool call."""

    raw_item: FunctionCallOutput | ComputerCallOutput
    """The raw item from the model."""

    output: Any
    """The output of the tool call. This is whatever the tool call returned; the `raw_item`
    contains a string representation of the output.
    """

    type: Literal["tool_call_output_item"] = "tool_call_output_item"

代理 instance-attribute

agent: Agent[Any]

生成此项目的代理运行。

原始项目 instance-attribute

raw_item: FunctionCallOutput | ComputerCallOutput

模型输出的原始项。

输出 instance-attribute

output: Any

工具调用的输出结果。这是工具调用返回的任何内容;raw_item包含输出的字符串表示形式。

to_input_item

to_input_item() -> TResponseInputItem

将此项目转换为适合传递给模型的输入项目。

Source code in src/agents/items.py
def to_input_item(self) -> TResponseInputItem:
    """Converts this item into an input item suitable for passing to the model."""
    if isinstance(self.raw_item, dict):
        # We know that input items are dicts, so we can ignore the type error
        return self.raw_item  # type: ignore
    elif isinstance(self.raw_item, BaseModel):
        # All output items are Pydantic models that can be converted to input items.
        return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
    else:
        raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

推理项 dataclass

基类:RunItemBase[ResponseReasoningItem]

表示一个推理项。

Source code in src/agents/items.py
@dataclass
class ReasoningItem(RunItemBase[ResponseReasoningItem]):
    """Represents a reasoning item."""

    raw_item: ResponseReasoningItem
    """The raw reasoning item."""

    type: Literal["reasoning_item"] = "reasoning_item"

代理 instance-attribute

agent: Agent[Any]

生成此项目的代理运行。

原始项目 instance-attribute

raw_item: ResponseReasoningItem

原始推理项。

to_input_item

to_input_item() -> TResponseInputItem

将此项目转换为适合传递给模型的输入项目。

Source code in src/agents/items.py
def to_input_item(self) -> TResponseInputItem:
    """Converts this item into an input item suitable for passing to the model."""
    if isinstance(self.raw_item, dict):
        # We know that input items are dicts, so we can ignore the type error
        return self.raw_item  # type: ignore
    elif isinstance(self.raw_item, BaseModel):
        # All output items are Pydantic models that can be converted to input items.
        return self.raw_item.model_dump(exclude_unset=True)  # type: ignore
    else:
        raise AgentsException(f"Unexpected raw item type: {type(self.raw_item)}")

模型响应 dataclass

Source code in src/agents/items.py
@dataclass
class ModelResponse:
    output: list[TResponseOutputItem]
    """A list of outputs (messages, tool calls, etc) generated by the model"""

    usage: Usage
    """The usage information for the response."""

    referenceable_id: str | None
    """An ID for the response which can be used to refer to the response in subsequent calls to the
    model. Not supported by all model providers.
    """

    def to_input_items(self) -> list[TResponseInputItem]:
        """Convert the output into a list of input items suitable for passing to the model."""
        # We happen to know that the shape of the Pydantic output items are the same as the
        # equivalent TypedDict input items, so we can just convert each one.
        # This is also tested via unit tests.
        return [it.model_dump(exclude_unset=True) for it in self.output]  # type: ignore

输出 instance-attribute

output: list[TResponseOutputItem]

模型生成的一系列输出(消息、工具调用等)

用法 instance-attribute

usage: Usage

响应的使用信息。

referenceable_id instance-attribute

referenceable_id: str | None

一个响应ID,可用于在后续调用模型时引用该响应。并非所有模型提供商都支持此功能。

to_input_items

to_input_items() -> list[TResponseInputItem]

将输出转换为适合传递给模型的输入项列表。

Source code in src/agents/items.py
def to_input_items(self) -> list[TResponseInputItem]:
    """Convert the output into a list of input items suitable for passing to the model."""
    # We happen to know that the shape of the Pydantic output items are the same as the
    # equivalent TypedDict input items, so we can just convert each one.
    # This is also tested via unit tests.
    return [it.model_dump(exclude_unset=True) for it in self.output]  # type: ignore

项目助手

Source code in src/agents/items.py
class ItemHelpers:
    @classmethod
    def extract_last_content(cls, message: TResponseOutputItem) -> str:
        """Extracts the last text content or refusal from a message."""
        if not isinstance(message, ResponseOutputMessage):
            return ""

        last_content = message.content[-1]
        if isinstance(last_content, ResponseOutputText):
            return last_content.text
        elif isinstance(last_content, ResponseOutputRefusal):
            return last_content.refusal
        else:
            raise ModelBehaviorError(f"Unexpected content type: {type(last_content)}")

    @classmethod
    def extract_last_text(cls, message: TResponseOutputItem) -> str | None:
        """Extracts the last text content from a message, if any. Ignores refusals."""
        if isinstance(message, ResponseOutputMessage):
            last_content = message.content[-1]
            if isinstance(last_content, ResponseOutputText):
                return last_content.text

        return None

    @classmethod
    def input_to_new_input_list(
        cls, input: str | list[TResponseInputItem]
    ) -> list[TResponseInputItem]:
        """Converts a string or list of input items into a list of input items."""
        if isinstance(input, str):
            return [
                {
                    "content": input,
                    "role": "user",
                }
            ]
        return copy.deepcopy(input)

    @classmethod
    def text_message_outputs(cls, items: list[RunItem]) -> str:
        """Concatenates all the text content from a list of message output items."""
        text = ""
        for item in items:
            if isinstance(item, MessageOutputItem):
                text += cls.text_message_output(item)
        return text

    @classmethod
    def text_message_output(cls, message: MessageOutputItem) -> str:
        """Extracts all the text content from a single message output item."""
        text = ""
        for item in message.raw_item.content:
            if isinstance(item, ResponseOutputText):
                text += item.text
        return text

    @classmethod
    def tool_call_output_item(
        cls, tool_call: ResponseFunctionToolCall, output: str
    ) -> FunctionCallOutput:
        """Creates a tool call output item from a tool call and its output."""
        return {
            "call_id": tool_call.call_id,
            "output": output,
            "type": "function_call_output",
        }

extract_last_content classmethod

extract_last_content(message: TResponseOutputItem) -> str

提取消息中的最后文本内容或拒绝信息。

Source code in src/agents/items.py
@classmethod
def extract_last_content(cls, message: TResponseOutputItem) -> str:
    """Extracts the last text content or refusal from a message."""
    if not isinstance(message, ResponseOutputMessage):
        return ""

    last_content = message.content[-1]
    if isinstance(last_content, ResponseOutputText):
        return last_content.text
    elif isinstance(last_content, ResponseOutputRefusal):
        return last_content.refusal
    else:
        raise ModelBehaviorError(f"Unexpected content type: {type(last_content)}")

extract_last_text classmethod

extract_last_text(
    message: TResponseOutputItem,
) -> str | None

从消息中提取最后的文本内容(如果有的话)。忽略拒绝回复。

Source code in src/agents/items.py
@classmethod
def extract_last_text(cls, message: TResponseOutputItem) -> str | None:
    """Extracts the last text content from a message, if any. Ignores refusals."""
    if isinstance(message, ResponseOutputMessage):
        last_content = message.content[-1]
        if isinstance(last_content, ResponseOutputText):
            return last_content.text

    return None

input_to_new_input_list classmethod

input_to_new_input_list(
    input: str | list[TResponseInputItem],
) -> list[TResponseInputItem]

将字符串或输入项列表转换为输入项列表。

Source code in src/agents/items.py
@classmethod
def input_to_new_input_list(
    cls, input: str | list[TResponseInputItem]
) -> list[TResponseInputItem]:
    """Converts a string or list of input items into a list of input items."""
    if isinstance(input, str):
        return [
            {
                "content": input,
                "role": "user",
            }
        ]
    return copy.deepcopy(input)

文本消息输出 classmethod

text_message_outputs(items: list[RunItem]) -> str

将消息输出项列表中的所有文本内容连接起来。

Source code in src/agents/items.py
@classmethod
def text_message_outputs(cls, items: list[RunItem]) -> str:
    """Concatenates all the text content from a list of message output items."""
    text = ""
    for item in items:
        if isinstance(item, MessageOutputItem):
            text += cls.text_message_output(item)
    return text

text_message_output classmethod

text_message_output(message: MessageOutputItem) -> str

从单个消息输出项中提取所有文本内容。

Source code in src/agents/items.py
@classmethod
def text_message_output(cls, message: MessageOutputItem) -> str:
    """Extracts all the text content from a single message output item."""
    text = ""
    for item in message.raw_item.content:
        if isinstance(item, ResponseOutputText):
            text += item.text
    return text

工具调用输出项 classmethod

tool_call_output_item(
    tool_call: ResponseFunctionToolCall, output: str
) -> FunctionCallOutput

根据工具调用及其输出创建一个工具调用输出项。

Source code in src/agents/items.py
@classmethod
def tool_call_output_item(
    cls, tool_call: ResponseFunctionToolCall, output: str
) -> FunctionCallOutput:
    """Creates a tool call output item from a tool call and its output."""
    return {
        "call_id": tool_call.call_id,
        "output": output,
        "type": "function_call_output",
    }