自定义存储#
默认情况下,LlamaIndex隐藏了复杂性,让您用不到5行代码就能查询数据:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("Summarize the documents.")
在底层实现中,LlamaIndex还支持可替换的存储层,允许您自定义存储位置,包括已处理的文档(即Node
对象)、嵌入向量和索引元数据。
底层API#
为此,不使用高级API,
index = VectorStoreIndex.from_documents(documents)
我们使用一个更低级别的API,提供更细粒度的控制:
from llama_index.core.storage.docstore import SimpleDocumentStore
from llama_index.core.storage.index_store import SimpleIndexStore
from llama_index.core.vector_stores import SimpleVectorStore
from llama_index.core.node_parser import SentenceSplitter
# create parser and parse document into nodes
parser = SentenceSplitter()
nodes = parser.get_nodes_from_documents(documents)
# create storage context using default stores
storage_context = StorageContext.from_defaults(
docstore=SimpleDocumentStore(),
vector_store=SimpleVectorStore(),
index_store=SimpleIndexStore(),
)
# create (or load) docstore and add nodes
storage_context.docstore.add_documents(nodes)
# build index
index = VectorStoreIndex(nodes, storage_context=storage_context)
# save index
index.storage_context.persist(persist_dir="<persist_dir>")
# can also set index_id to save multiple indexes to the same folder
index.set_index_id("<index_id>")
index.storage_context.persist(persist_dir="<persist_dir>")
# to load index later, make sure you setup the storage context
# this will loaded the persisted stores from persist_dir
storage_context = StorageContext.from_defaults(persist_dir="<persist_dir>")
# then load the index object
from llama_index.core import load_index_from_storage
loaded_index = load_index_from_storage(storage_context)
# if loading an index from a persist_dir containing multiple indexes
loaded_index = load_index_from_storage(storage_context, index_id="<index_id>")
# if loading multiple indexes from a persist dir
loaded_indicies = load_index_from_storage(
storage_context, index_ids=["<index_id>", ...]
)
只需一行代码修改即可自定义底层存储,实例化不同的文档存储、索引存储和向量存储。 详情请参阅Document Stores、Vector Stores和Index Stores指南。
向量存储集成与存储#
我们的大多数向量存储集成将整个索引(向量+文本)存储在向量存储本身中。这带来了一个主要优势,即无需像上面所示那样显式持久化索引,因为向量存储已经托管并持久化了我们索引中的数据。
支持此实践的向量存储包括:
- AzureAISearchVectorStore
- ChatGPTRetrievalPluginClient
- CassandraVectorStore
- ChromaVectorStore
- EpsillaVectorStore
- DocArrayHnswVectorStore
- DocArrayInMemoryVectorStore
- JaguarVectorStore
- LanceDBVectorStore
- MetalVectorStore
- MilvusVectorStore
- MyScale向量存储
- OpensearchVectorStore
- PineconeVectorStore
- QdrantVectorStore
- TablestoreVectorStore
- RedisVectorStore
- UpstashVectorStore
- WeaviateVectorStore
下面是一个使用Pinecone的小例子:
import pinecone
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.pinecone import PineconeVectorStore
# Creating a Pinecone index
api_key = "api_key"
pinecone.init(api_key=api_key, environment="us-west1-gcp")
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
index = pinecone.Index("quickstart")
# construct vector store
vector_store = PineconeVectorStore(pinecone_index=index)
# create storage context
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# load documents
documents = SimpleDirectoryReader("./data").load_data()
# create index, which will insert documents/vectors to pinecone
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
如果您已经有一个包含数据的现有向量存储,可以按以下方式连接它并直接创建VectorStoreIndex
:
index = pinecone.Index("quickstart")
vector_store = PineconeVectorStore(pinecone_index=index)
loaded_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)