paddlespeech.t2s.models.ernie_sat.ernie_sat 模块
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.ErnieSAT(idim: int, odim: int, postnet_layers: int = 5, postnet_filts: int = 5, postnet_chans: int = 256, use_scaled_pos_enc: bool = False, encoder_type: str = 'conformer', decoder_type: str = 'conformer', enc_input_layer: str = 'sega_mlm', enc_pre_speech_layer: int = 0, enc_cnn_module_kernel: int = 7, enc_attention_dim: int = 384, enc_attention_heads: int = 2, enc_linear_units: int = 1536, enc_num_blocks: int = 4, enc_dropout_rate: float = 0.2, enc_positional_dropout_rate: float = 0.2, enc_attention_dropout_rate: float = 0.2, enc_normalize_before: bool = True, enc_macaron_style: bool = True, enc_use_cnn_module: bool = True, enc_selfattention_layer_type: str = 'legacy_rel_selfattn', enc_activation_type: str = 'swish', enc_pos_enc_layer_type: str = 'legacy_rel_pos', enc_positionwise_layer_type: str = 'conv1d', enc_positionwise_conv_kernel_size: int = 3, text_masking: bool = False, dec_cnn_module_kernel: int = 31, dec_attention_dim: int = 384, dec_attention_heads: int = 2, dec_linear_units: int = 1536, dec_num_blocks: int = 4, dec_dropout_rate: float = 0.2, dec_positional_dropout_rate: float = 0.2, dec_attention_dropout_rate: float = 0.2, dec_macaron_style: bool = True, dec_use_cnn_module: bool = True, dec_selfattention_layer_type: str = 'legacy_rel_selfattn', dec_activation_type: str = 'swish', dec_pos_enc_layer_type: str = 'legacy_rel_pos', dec_positionwise_layer_type: str = 'conv1d', dec_positionwise_conv_kernel_size: int = 3, init_type: str = 'xavier_uniform')[来源]
基础:
Layer方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(speech, text, masked_pos, ...)定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
推断
注册状态字典钩子
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.ErnieSATInference(normalizer, model)[来源]
基础:
Layer方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(speech, text, masked_pos, ...[, ...])定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.MLM(odim: int, encoder: Layer, decoder: Optional[Layer], postnet_layers: int = 0, postnet_chans: int = 0, postnet_filts: int = 0, text_masking: bool = False)[来源]
基础:
Layer方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(*inputs, **kwargs)定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
inference(speech, text, masked_pos, ...[, ...])参数:
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- inference(speech: Tensor, text: Tensor, masked_pos: Tensor, speech_mask: Tensor, text_mask: Tensor, speech_seg_pos: Tensor, text_seg_pos: Tensor, span_bdy: List[int], use_teacher_forcing: bool = True) List[Tensor][来源]
- Args:
- speech (paddle.Tensor):
输入语音 (1, Tmax, D).
- text (paddle.Tensor):
输入文本 (1, Tmax2).
- masked_pos (paddle.Tensor):
输入语音的掩蔽位置 (1, Tmax)
- speech_mask (paddle.Tensor):
语音掩码 (1, 1, Tmax).
- text_mask (paddle.Tensor):
文本的掩码 (1, 1, Tmax2).
- speech_seg_pos (paddle.Tensor):
每个mel的第n个电话,0<=n<=Tmax2 (1, Tmax).
- text_seg_pos (paddle.Tensor):
每个电话的第n个电话,0<=n<=Tmax2 (1, Tmax2)。
- span_bdy (List[int]):
输入语音的掩蔽边界 (2,)
- use_teacher_forcing (bool):
是否使用教师强迫
- Returns:
- List[Tensor]:
例如: [Tensor(shape=[1, 181, 80]), Tensor(shape=[80, 80]), Tensor(shape=[1, 67, 80])]
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.MLMDecoder(idim: int, vocab_size: int = 0, pre_speech_layer: int = 0, attention_dim: int = 256, attention_heads: int = 4, linear_units: int = 2048, num_blocks: int = 6, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, attention_dropout_rate: float = 0.0, input_layer: str = 'conv2d', normalize_before: bool = True, concat_after: bool = False, positionwise_layer_type: str = 'linear', positionwise_conv_kernel_size: int = 1, macaron_style: bool = False, pos_enc_layer_type: str = 'abs_pos', pos_enc_class=None, selfattention_layer_type: str = 'selfattn', activation_type: str = 'swish', use_cnn_module: bool = False, zero_triu: bool = False, cnn_module_kernel: int = 31, padding_idx: int = -1, stochastic_depth_rate: float = 0.0, text_masking: bool = False)[来源]
基础:
MLMEncoder方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(xs, masks)对输入序列进行编码。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.MLMDualMaksing(odim: int, encoder: Layer, decoder: Optional[Layer], postnet_layers: int = 0, postnet_chans: int = 0, postnet_filts: int = 0, text_masking: bool = False)[来源]
基础:
MLM方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(speech, text, masked_pos, ...)定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
inference(speech, text, masked_pos, ...[, ...])参数:
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.MLMEncAsDecoder(odim: int, encoder: Layer, decoder: Optional[Layer], postnet_layers: int = 0, postnet_chans: int = 0, postnet_filts: int = 0, text_masking: bool = False)[来源]
基础:
MLM方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(speech, text, masked_pos, ...)定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
inference(speech, text, masked_pos, ...[, ...])参数:
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.MLMEncoder(idim: int, vocab_size: int = 0, pre_speech_layer: int = 0, attention_dim: int = 256, attention_heads: int = 4, linear_units: int = 2048, num_blocks: int = 6, dropout_rate: float = 0.1, positional_dropout_rate: float = 0.1, attention_dropout_rate: float = 0.0, input_layer: str = 'conv2d', normalize_before: bool = True, concat_after: bool = False, positionwise_layer_type: str = 'linear', positionwise_conv_kernel_size: int = 1, macaron_style: bool = False, pos_enc_layer_type: str = 'abs_pos', pos_enc_class=None, selfattention_layer_type: str = 'selfattn', activation_type: str = 'swish', use_cnn_module: bool = False, zero_triu: bool = False, cnn_module_kernel: int = 31, padding_idx: int = -1, stochastic_depth_rate: float = 0.0, text_masking: bool = False)[来源]
基础:
LayerConformer 编码器模块。
- Args:
- idim (int):
输入维度。
- attention_dim (int):
注意力的维度。
- attention_heads (int):
多头注意力的头数量。
- linear_units (int):
位置逐步前馈的单元数量。
- num_blocks (int):
解码器块的数量。
- dropout_rate (float):
dropout 率。
- positional_dropout_rate (float):
添加位置编码后的 dropout 率。
- attention_dropout_rate (float):
注意力中的丢弃率。
- input_layer (Union[str, paddle.nn.Layer]):
输入层类型。
- normalize_before (bool):
是否在第一个模块之前使用层归一化。
- concat_after (bool):
是否连接注意力层的输入和输出。 如果为真,将应用额外的线性变换。 即 x -> x + linear(concat(x, att(x))) 如果为假,则不应用额外的线性变换。即 x -> x + att(x)
- positionwise_layer_type (str):
"线性", "一维卷积", 或 "一维卷积-线性".
- positionwise_conv_kernel_size (int):
位置逐层卷积1d层的核大小。
- macaron_style (bool):
是否对逐位置层使用马卡龙风格。
- pos_enc_layer_type (str):
编码器位置编码层类型。
- selfattention_layer_type (str):
编码器注意力层类型。
- activation_type (str):
编码器激活函数类型。
- use_cnn_module (bool):
是否使用卷积模块。
- zero_triu (bool):
是否将注意力矩阵的上三角部分置为零。
- cnn_module_kernel (int):
卷积模块的卷积核大小。
- padding_idx (int):
输入层=embed的填充索引。
- stochastic_depth_rate (float):
跳过编码器层的最大概率。
方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(speech, text, masked_pos[, ...])编码输入序列。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.MaskInputLayer(out_features: int)[来源]
基础:
Layer方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(input[, masked_pos])定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子
- class paddlespeech.t2s.models.ernie_sat.ernie_sat.mySequential(*layers)[来源]
基础:
Sequential方法
__call__(*inputs, **kwargs)将self作为一个函数调用。
add_parameter(name, parameter)添加一个参数实例。
add_sublayer(name, sublayer)添加一个子层实例。
apply(fn)递归地将
fn应用到每个子层(由.sublayers()返回)以及自身。buffers([include_sublayers])返回当前层及其子层中的所有缓冲区的列表。
children()返回一个迭代器,遍历直接子层。
clear_gradients()清除此层所有参数的梯度。
create_parameter(shape[, attr, dtype, ...])为该层创建参数。
create_tensor([name, persistable, dtype])为该层创建张量。
create_variable([name, persistable, dtype])为该层创建张量。
eval()将该层及其所有子层设置为评估模式。
extra_repr()该层的额外表示,您可以自定义实现自己的层。
forward(*inputs)定义每次调用时执行的计算。
full_name()此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成
load_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化缓存。
named_buffers([prefix, include_sublayers])返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。
named_children()返回一个直接子层的迭代器,同时提供层的名称和层本身。
named_parameters([prefix, include_sublayers])返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。
named_sublayers([prefix, include_self, ...])返回Layer中所有子层的迭代器,生成名称和子层的元组。
parameters([include_sublayers])返回当前层及其子层的所有参数的列表。
register_buffer(name, tensor[, persistable])将一个张量注册为该层的缓冲区。
register_forward_post_hook(hook)为层注册一个前向后钩子。
register_forward_pre_hook(hook)为层注册一个前向预钩子。
set_dict(state_dict[, use_structured_name])从 state_dict 设置参数和可持久化的缓冲区。
set_state_dict(state_dict[, use_structured_name])从state_dict设置参数和持久化缓冲区。
state_dict([destination, include_sublayers, ...])获取当前层及其子层的所有参数和可持久化缓冲区。
sublayers([include_self])返回子层的列表。
to([device, dtype, blocking])通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。
to_static_state_dict([destination, ...])获取当前层及其子层的所有参数和缓冲区。
train()将此层及其所有子层设置为训练模式。
向后
注册状态字典钩子