paddlespeech.t2s.models.hifigan.hifigan 模块

class paddlespeech.t2s.models.hifigan.hifigan.HiFiGANGenerator(in_channels: int = 80, out_channels: int = 1, channels: int = 512, global_channels: int = -1, kernel_size: int = 7, upsample_scales: List[int] = (5, 5, 4, 3), upsample_kernel_sizes: List[int] = (10, 10, 8, 6), resblock_kernel_sizes: List[int] = (3, 7, 11), resblock_dilations: List[List[int]] = [(1, 3, 5), (1, 3, 5), (1, 3, 5)], use_additional_convs: bool = True, bias: bool = True, nonlinear_activation: str = 'leakyrelu', nonlinear_activation_params: Dict[str, Any] = {'negative_slope': 0.1}, use_weight_norm: bool = True, init_type: str = 'xavier_uniform', use_istft: bool = False, istft_layer_id: int = 2, n_fft: int = 2048, win_length: int = 1200)[来源]

基础: Layer

HiFiGAN 生成器模块。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

apply_weight_norm()

递归地对子层中的所有卷积层应用权重规范化。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(c[, g])

计算前向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

inference(c[, g])

执行推理。 参数: c (Tensor): 输入张量 (T, in_channels)。 g (Optional[Tensor]): 全局条件张量 (global_channels, 1)。 返回: Tensor: 输出张量 (T ** prod(upsample_scales), out_channels)。

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

remove_weight_norm()

递归地从所有的卷积层中的子层中移除权重归一化。

reset_parameters()

重置参数。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

apply_weight_norm()[来源]

递归地将权重归一化应用于所有卷积层中的子层。

forward(c, g: Optional[Tensor] = None)[来源]

计算前向传播。

Args:

c (Tensor): 输入张量 (B, in_channels, T).
g (Optional[Tensor]): 全局调节张量 (B, global_channels, 1).

Returns:

张量:输出张量 (B, out_channels, T)。

inference(c, g: Optional[Tensor] = None)[来源]

进行推断。 参数:

c (Tensor):

输入张量 (T, in_channels)。

g (Optional[Tensor]):

全局条件张量 (global_channels, 1)。

Returns:
Tensor:

输出张量 (T ** prod(upsample_scales), out_channels).

remove_weight_norm()[来源]

递归地从子层中的所有卷积层中移除权重归一化。

reset_parameters()[来源]

重置参数。 该初始化遵循官方实现方式。 https://github.com/jik876/hifi-gan/blob/master/models.py

class paddlespeech.t2s.models.hifigan.hifigan.HiFiGANInference(normalizer, hifigan_generator)[来源]

基础: Layer

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(logmel)

定义每次调用时执行的计算。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(logmel)[来源]

定义每次调用时执行的计算。应该被所有子类重写。

Parameters:

*inputs(tuple): 解包的元组参数 **kwargs(dict): 解包的字典参数

class paddlespeech.t2s.models.hifigan.hifigan.HiFiGANMultiPeriodDiscriminator(periods: List[int] = [2, 3, 5, 7, 11], discriminator_params: Dict[str, Any] = {'bias': True, 'channels': 32, 'downsample_scales': [3, 3, 3, 3, 1], 'in_channels': 1, 'kernel_sizes': [5, 3], 'max_downsample_channels': 1024, 'nonlinear_activation': 'leakyrelu', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'out_channels': 1, 'use_spectral_norm': False, 'use_weight_norm': True}, init_type: str = 'xavier_uniform')[来源]

基础: Layer

HiFiGAN 多周期判别器模块。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(x)

计算正向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(x)[来源]

计算前向传播。

Args:
x (Tensor):

输入噪声信号 (B, 1, T).

Returns:

列表:每个判别器输出的列表的列表,包含每层输出张量。

class paddlespeech.t2s.models.hifigan.hifigan.HiFiGANMultiScaleDiscriminator(scales: int = 3, downsample_pooling: str = 'AvgPool1D', downsample_pooling_params: Dict[str, Any] = {'kernel_size': 4, 'padding': 2, 'stride': 2}, discriminator_params: Dict[str, Any] = {'bias': True, 'channels': 128, 'downsample_scales': [2, 2, 4, 4, 1], 'in_channels': 1, 'kernel_sizes': [15, 41, 5, 3], 'max_downsample_channels': 1024, 'max_groups': 16, 'nonlinear_activation': 'leakyrelu', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'out_channels': 1}, follow_official_norm: bool = False, init_type: str = 'xavier_uniform')[来源]

基础: Layer

HiFi-GAN 多尺度判别器模块。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(x)

计算正向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(x)[来源]

计算前向传播。

Args:
x (Tensor):

输入噪声信号 (B, 1, T).

Returns:

列表:每个判别器输出的列表的列表,包含每层输出张量。

class paddlespeech.t2s.models.hifigan.hifigan.HiFiGANMultiScaleMultiPeriodDiscriminator(scales: int = 3, scale_downsample_pooling: str = 'AvgPool1D', scale_downsample_pooling_params: Dict[str, Any] = {'kernel_size': 4, 'padding': 2, 'stride': 2}, scale_discriminator_params: Dict[str, Any] = {'bias': True, 'channels': 128, 'downsample_scales': [2, 2, 4, 4, 1], 'in_channels': 1, 'kernel_sizes': [15, 41, 5, 3], 'max_downsample_channels': 1024, 'max_groups': 16, 'nonlinear_activation': 'leakyrelu', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'out_channels': 1}, follow_official_norm: bool = True, periods: List[int] = [2, 3, 5, 7, 11], period_discriminator_params: Dict[str, Any] = {'bias': True, 'channels': 32, 'downsample_scales': [3, 3, 3, 3, 1], 'in_channels': 1, 'kernel_sizes': [5, 3], 'max_downsample_channels': 1024, 'nonlinear_activation': 'leakyrelu', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'out_channels': 1, 'use_spectral_norm': False, 'use_weight_norm': True}, init_type: str = 'xavier_uniform')[来源]

基础: Layer

HiFi-GAN 多尺度 + 多周期判别模块。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(x)

计算正向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(x)[来源]

计算前向传播。

Args:
x (Tensor):

输入噪声信号 (B, 1, T).

Returns:
List:

每个判别器输出的列表,其中包含每层输出张量。多尺度和多周期的张量被连接在一起。

class paddlespeech.t2s.models.hifigan.hifigan.HiFiGANPeriodDiscriminator(in_channels: int = 1, out_channels: int = 1, period: int = 3, kernel_sizes: List[int] = [5, 3], channels: int = 32, downsample_scales: List[int] = [3, 3, 3, 3, 1], max_downsample_channels: int = 1024, bias: bool = True, nonlinear_activation: str = 'leakyrelu', nonlinear_activation_params: Dict[str, Any] = {'negative_slope': 0.1}, use_weight_norm: bool = True, use_spectral_norm: bool = False, init_type: str = 'xavier_uniform')[来源]

基础: Layer

HiFiGAN周期鉴别器模块。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

apply_spectral_norm()

应用所有层的谱归一化模块。

apply_weight_norm()

递归地对子层中的所有卷积层应用权重规范化。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(x)

计算正向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

apply_spectral_norm()[来源]

对所有层应用光谱归一化模块。

apply_weight_norm()[来源]

递归地将权重归一化应用于所有卷积层中的子层。

forward(x)[来源]

计算前向传播。

Args:
c (Tensor):

输入张量 (B, in_channels, T).

Returns:

列表:每个层的张量列表。

class paddlespeech.t2s.models.hifigan.hifigan.HiFiGANScaleDiscriminator(in_channels: int = 1, out_channels: int = 1, kernel_sizes: List[int] = [15, 41, 5, 3], channels: int = 128, max_downsample_channels: int = 1024, max_groups: int = 16, bias: bool = True, downsample_scales: List[int] = [2, 2, 4, 4, 1], nonlinear_activation: str = 'leakyrelu', nonlinear_activation_params: Dict[str, Any] = {'negative_slope': 0.1}, use_weight_norm: bool = True, use_spectral_norm: bool = False, init_type: str = 'xavier_uniform')[来源]

基础: Layer

HiFi-GAN 比例鉴别器模块。

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

apply_spectral_norm()

应用所有层的谱归一化模块。

apply_weight_norm()

递归地对子层中的所有卷积层应用权重规范化。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(x)

计算正向传播。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

apply_spectral_norm()[来源]

从所有层应用光谱归一化模块。

apply_weight_norm()[来源]

递归地将权重归一化应用于所有卷积层中的子层。

forward(x)[来源]

计算前向传播。

Args:

x (Tensor): 输入噪声信号 (B, 1, T)。

Returns:

列表:每层的输出张量列表。