paddlespeech.t2s.models.wavernn.wavernn 模块

class paddlespeech.t2s.models.wavernn.wavernn.MelResNet(res_blocks: int = 10, compute_dims: int = 128, res_out_dims: int = 128, aux_channels: int = 80, aux_context_window: int = 0)[来源]

基础: Layer

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(x)

参数:

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(x)[来源]
Args:
x (Tensor):

输入张量 (B, in_dims, T).

Returns:
Tensor:

输出张量 (B, res_out_dims, T).

class paddlespeech.t2s.models.wavernn.wavernn.ResBlock(dims)[来源]

基础: Layer

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(x)

卷积 -> 批量归一化 -> ReLU -> 卷积 -> 批量归一化 + 残差连接

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(x)[来源]

卷积 -> 批量归一化 -> ReLU -> 卷积 -> 批量归一化 + 残差连接

class paddlespeech.t2s.models.wavernn.wavernn.UpsampleNetwork(aux_channels: int = 80, upsample_scales: List[int] = [4, 5, 3, 5], compute_dims: int = 128, res_blocks: int = 10, res_out_dims: int = 128, aux_context_window: int = 2)[来源]

基础: Layer

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(m)

参数:

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(m)[来源]
Args:
c (Tensor):

输入张量 (B, C_aux, T)。

Returns:
Tensor:

输出张量 (B, (T - 2 * pad) * prob(upsample_scales), C_aux).

Tensor:

输出张量 (B, (T - 2 * pad) * prob(upsample_scales), res_out_dims).

class paddlespeech.t2s.models.wavernn.wavernn.WaveRNN(rnn_dims: int = 512, fc_dims: int = 512, bits: int = 9, aux_context_window: int = 2, upsample_scales: List[int] = [4, 5, 3, 5], aux_channels: int = 80, compute_dims: int = 128, res_out_dims: int = 128, res_blocks: int = 10, hop_length: int = 300, sample_rate: int = 24000, mode='RAW', init_type: str = 'xavier_uniform')[来源]

基础: Layer

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

fold_with_overlap(x, target, overlap)

对张量进行重叠折叠以实现快速批量推断。

forward(x, c)

参数:

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

generate(c[, batched, target, overlap, ...])

参数:

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

pad_tensor(x, pad[, side])

参数:

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

xfade_and_unfold(y[, target, overlap])

应用交叉渐变并展开为一维数组。

向后

生成显示

进度条

注册状态字典钩子

fold_with_overlap(x, target, overlap)[来源]

将张量折叠以便快速批量推理。重叠将用于xfade_and_unfold()中的交叉渐变。

Args:
x(Tensor):

上采样的条件特征。mels 或 aux 形状=(1, T, 特征) mels: [1, T, 80] aux: [1, T, 128]

target(int):

每个批次索引的目标时间步

overlap(int):

xfade和rnn预热的时间步

Returns:
Tensor:

形状=(num_folds, target + 2 * overlap, 特征) num_flods = (time_seq - overlap) // (target + overlap) mel: [num_folds, target + 2 * overlap, 80] aux: [num_folds, target + 2 * overlap, 128]

Details:

x = [[h1, h2, ... hn]]
每个 h 是一个条件特征的向量
例如: target=2, overlap=1,且 x.size(1)=10

folded = [[h1, h2, h3, h4],

[h4, h5, h6, h7], [h7, h8, h9, h10]]

forward(x, c)[来源]
Args:
x (Tensor):

wav 序列, [B, T]

c (Tensor):

梅尔谱 [B, C_aux, T']

T = (T' - 2 * aux_context_window ) * hop_length

Returns:

张量: [B, T, n_classes]

gen_display(i, seq_len, b_size, start)[来源]
generate(c, batched: bool = True, target: int = 12000, overlap: int = 600, mu_law: bool = True, gen_display: bool = False)[来源]
Args:
c(Tensor):

输入 mels, (T', C_aux)

batched(bool):

批量生成还是不生成

target(int):

每批次生成的样本数量目标

overlap(int):

用于批次间交叉淡化的样本数

mu_law(布尔值)

Returns:
wav sequence:

输出 (T' * prod(upsample_scales), out_channels, C_out).

pad_tensor(x, pad, side='both')[来源]
Args:
x(Tensor):

mel,[1,n_frames,80]

pad(int):

边(str, 可选): (默认值 = 'both')

Returns:

张量

progbar(i, n, size=16)[来源]
xfade_and_unfold(y, target: int = 12000, overlap: int = 600)[来源]

应用交叉淡化并展开为一维数组。

Args:
y (Tensor):

音频样本的批处理序列 shape=(num_folds, target + 2 * overlap) dtype=paddle.float32

重叠 (int): xfade 和 rnn 预热的时间步长

Returns:
Tensor

一维数组中的音频样本 shape=(total_len) dtype=paddle.float32

Details:
y = [[seq1],

[seq2], [seq3]]

在序列的两端应用增益包络

y = [[seq1_in, seq1_target, seq1_out],

[seq2_in, seq2_target, seq2_out], [seq3_in, seq3_target, seq3_out]]

交错并汇总样本组:

[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]

class paddlespeech.t2s.models.wavernn.wavernn.WaveRNNInference(normalizer, wavernn)[来源]

基础: Layer

方法

__call__(*inputs, **kwargs)

将self作为一个函数调用。

add_parameter(name, parameter)

添加一个参数实例。

add_sublayer(name, sublayer)

添加一个子层实例。

apply(fn)

递归地将 fn 应用到每个子层(由 .sublayers() 返回)以及自身。

buffers([include_sublayers])

返回当前层及其子层中的所有缓冲区的列表。

children()

返回一个迭代器,遍历直接子层。

clear_gradients()

清除此层所有参数的梯度。

create_parameter(shape[, attr, dtype, ...])

为该层创建参数。

create_tensor([name, persistable, dtype])

为该层创建张量。

create_variable([name, persistable, dtype])

为该层创建张量。

eval()

将该层及其所有子层设置为评估模式。

extra_repr()

该层的额外表示,您可以自定义实现自己的层。

forward(logmel[, batched, target, overlap, ...])

定义每次调用时执行的计算。

full_name()

此层的完整名称,由 name_scope + "/" + MyLayer.__class__.__name__ 组成

load_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化缓存。

named_buffers([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有缓冲区,生成名称和张量的元组。

named_children()

返回一个直接子层的迭代器,同时提供层的名称和层本身。

named_parameters([prefix, include_sublayers])

返回一个迭代器,遍历层中的所有参数,生成名称和参数的元组。

named_sublayers([prefix, include_self, ...])

返回Layer中所有子层的迭代器,生成名称和子层的元组。

parameters([include_sublayers])

返回当前层及其子层的所有参数的列表。

register_buffer(name, tensor[, persistable])

将一个张量注册为该层的缓冲区。

register_forward_post_hook(hook)

为层注册一个前向后钩子。

register_forward_pre_hook(hook)

为层注册一个前向预钩子。

set_dict(state_dict[, use_structured_name])

从 state_dict 设置参数和可持久化的缓冲区。

set_state_dict(state_dict[, use_structured_name])

从state_dict设置参数和持久化缓冲区。

state_dict([destination, include_sublayers, ...])

获取当前层及其子层的所有参数和可持久化缓冲区。

sublayers([include_self])

返回子层的列表。

to([device, dtype, blocking])

通过给定的设备、数据类型和阻塞方式转换层的参数和缓冲区。

to_static_state_dict([destination, ...])

获取当前层及其子层的所有参数和缓冲区。

train()

将此层及其所有子层设置为训练模式。

向后

注册状态字典钩子

forward(logmel, batched: bool = True, target: int = 12000, overlap: int = 600, mu_law: bool = True, gen_display: bool = False)[来源]

定义每次调用时执行的计算。应该被所有子类重写。

Parameters:

*inputs(tuple): 解包的元组参数 **kwargs(dict): 解包的字典参数