使用分布式XGBoost训练模型#
本指南将向您展示如何使用分布式XGBoost训练模型并执行批量推理。您将使用Ray Train和Ray Data。
让我们开始安装我们的依赖项:
!pip install -qU "ray[data,train]"
[notice] A new release of pip available: 22.3.1 -> 23.1.2
[notice] To update, run: pip install --upgrade pip
然后我们需要一些导入:
from typing import Tuple
import ray
from ray.data import Dataset, Preprocessor
from ray.data.preprocessors import StandardScaler
from ray.train.xgboost import XGBoostTrainer
from ray.train import Result, ScalingConfig
import xgboost
接下来我们定义一个函数来加载我们的训练、验证和测试数据集。
def prepare_data() -> Tuple[Dataset, Dataset, Dataset]:
dataset = ray.data.read_csv("s3://anonymous@air-example-data/breast_cancer.csv")
train_dataset, valid_dataset = dataset.train_test_split(test_size=0.3)
test_dataset = valid_dataset.drop_columns(["target"])
return train_dataset, valid_dataset, test_dataset
以下函数将创建一个XGBoost训练器,训练它,并返回结果。
def train_xgboost(num_workers: int, use_gpu: bool = False) -> Result:
train_dataset, valid_dataset, _ = prepare_data()
# 缩放一些随机列
columns_to_scale = ["mean radius", "mean texture"]
preprocessor = StandardScaler(columns=columns_to_scale)
train_dataset = preprocessor.fit_transform(train_dataset)
valid_dataset = preprocessor.transform(valid_dataset)
# XGBoost 特定参数
params = {
"tree_method": "approx",
"objective": "binary:logistic",
"eval_metric": ["logloss", "error"],
}
trainer = XGBoostTrainer(
scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
label_column="target",
params=params,
datasets={"train": train_dataset, "valid": valid_dataset},
num_boost_round=100,
metadata = {"preprocessor_pkl": preprocessor.serialize()}
)
result = trainer.fit()
print(result.metrics)
return result
一旦我们获得结果,就可以对得到的模型进行批量推理。让我们为此定义一个工具函数。
import pandas as pd
from ray.train import Checkpoint
class Predict:
def __init__(self, checkpoint: Checkpoint):
self.model = XGBoostTrainer.get_model(checkpoint)
self.preprocessor = Preprocessor.deserialize(checkpoint.get_metadata()["preprocessor_pkl"])
def __call__(self, batch: pd.DataFrame) -> pd.DataFrame:
preprocessed_batch = self.preprocessor.transform_batch(batch)
dmatrix = xgboost.DMatrix(preprocessed_batch)
return {"predictions": self.model.predict(dmatrix)}
def predict_xgboost(result: Result):
_, _, test_dataset = prepare_data()
scores = test_dataset.map_batches(
Predict,
fn_constructor_args=[result.checkpoint],
concurrency=1,
batch_format="pandas"
)
predicted_labels = scores.map_batches(lambda df: (df > 0.5).astype(int), batch_format="pandas")
print(f"PREDICTED LABELS")
predicted_labels.show()
现在我们可以开始训练了:
result = train_xgboost(num_workers=2, use_gpu=False)
Tune Status
| Current time: | 2023-07-06 18:33:25 |
| Running for: | 00:00:06.19 |
| Memory: | 14.9/64.0 GiB |
System Info
Using FIFO scheduling algorithm.Logical resource usage: 2.0/10 CPUs, 0/0 GPUs
Trial Status
| Trial name | status | loc | iter | total time (s) | train-logloss | train-error | valid-logloss |
|---|---|---|---|---|---|---|---|
| XGBoostTrainer_40fed_00000 | TERMINATED | 127.0.0.1:40725 | 101 | 4.90132 | 0.00587595 | 0 | 0.06215 |
(XGBoostTrainer pid=40725) The `preprocessor` arg to Trainer is deprecated. Apply preprocessor transformations ahead of time by calling `preprocessor.transform(ds)`. Support for the preprocessor arg will be dropped in a future release.
(XGBoostTrainer pid=40725) Tip: Use `take_batch()` instead of `take() / show()` to return records in pandas or numpy batch format.
(XGBoostTrainer pid=40725) Executing DAG InputDataBuffer[Input] -> AllToAllOperator[Aggregate]
(XGBoostTrainer pid=40725) Execution config: ExecutionOptions(resource_limits=ExecutionResources(cpu=None, gpu=None, object_store_memory=None), locality_with_output=False, preserve_order=False, actor_locality_enabled=True, verbose_progress=False)
(XGBoostTrainer pid=40725) Tip: For detailed progress reporting, run `ray.data.DataContext.get_current().execution_options.verbose_progress = True`
(pid=40725) Running: 0.0/10.0 CPU, 0.0/0.0 GPU, 0.0 MiB/512.0 MiB object_store_memory: 0%| | 0/14 [00:00<?, ?it/s]
(XGBoostTrainer pid=40725) Executing DAG InputDataBuffer[Input] -> TaskPoolMapOperator[MapBatches(StandardScaler._transform_pandas)]
(pid=40725) Running: 0.0/10.0 CPU, 0.0/0.0 GPU, 0.0 MiB/512.0 MiB object_store_memory: 0%| | 0/14 [00:01<?, ?it/s]
(XGBoostTrainer pid=40725) Execution config: ExecutionOptions(resource_limits=ExecutionResources(cpu=None, gpu=None, object_store_memory=None), locality_with_output=False, preserve_order=False, actor_locality_enabled=True, verbose_progress=False)
(pid=40725) Running: 0.0/10.0 CPU, 0.0/0.0 GPU, 0.0 MiB/512.0 MiB object_store_memory: 0%| | 0/14 [00:01<?, ?it/s]
(XGBoostTrainer pid=40725) Tip: For detailed progress reporting, run `ray.data.DataContext.get_current().execution_options.verbose_progress = True`
(pid=40725) Running: 0.0/10.0 CPU, 0.0/0.0 GPU, 0.0 MiB/512.0 MiB object_store_memory: 0%| | 0/14 [00:01<?, ?it/s]
(XGBoostTrainer pid=40725) Executing DAG InputDataBuffer[Input] -> TaskPoolMapOperator[MapBatches(StandardScaler._transform_pandas)]
(pid=40725) Running: 0.0/10.0 CPU, 0.0/0.0 GPU, 0.0 MiB/512.0 MiB object_store_memory: 0%| | 0/14 [00:01<?, ?it/s]
(XGBoostTrainer pid=40725) Execution config: ExecutionOptions(resource_limits=ExecutionResources(cpu=None, gpu=None, object_store_memory=None), locality_with_output=False, preserve_order=False, actor_locality_enabled=True, verbose_progress=False)
(pid=40725) Running: 0.0/10.0 CPU, 0.0/0.0 GPU, 0.0 MiB/512.0 MiB object_store_memory: 0%| | 0/14 [00:01<?, ?it/s]
(XGBoostTrainer pid=40725) Tip: For detailed progress reporting, run `ray.data.DataContext.get_current().execution_options.verbose_progress = True`
(pid=40725) Running: 0.0/10.0 CPU, 0.0/0.0 GPU, 0.0 MiB/512.0 MiB object_store_memory: 0%| | 0/14 [00:01<?, ?it/s]
(_RemoteRayXGBoostActor pid=40741) [18:33:23] task [xgboost.ray]:5022217360 got new rank 1
2023-07-06 18:33:25,975 INFO tune.py:1148 -- Total run time: 6.20 seconds (6.19 seconds for the tuning loop).
{'train-logloss': 0.00587594546605992, 'train-error': 0.0, 'valid-logloss': 0.06215000962556052, 'valid-error': 0.02941176470588235, 'time_this_iter_s': 0.0101318359375, 'should_checkpoint': True, 'done': True, 'training_iteration': 101, 'trial_id': '40fed_00000', 'date': '2023-07-06_18-33-25', 'timestamp': 1688693605, 'time_total_s': 4.901317834854126, 'pid': 40725, 'hostname': 'Balajis-MacBook-Pro-16', 'node_ip': '127.0.0.1', 'config': {}, 'time_since_restore': 4.901317834854126, 'iterations_since_restore': 101, 'experiment_tag': '0'}
并对获得的模型进行推理:
predict_xgboost(result)
2023-07-06 18:33:27,259 INFO read_api.py:374 -- To satisfy the requested parallelism of 20, each read task output will be split into 20 smaller blocks.
2023-07-06 18:33:28,112 INFO streaming_executor.py:92 -- Executing DAG InputDataBuffer[Input] -> ActorPoolMapOperator[MapBatches(<lambda>)->MapBatches(Predict)] -> TaskPoolMapOperator[MapBatches(<lambda>)]
2023-07-06 18:33:28,112 INFO streaming_executor.py:93 -- Execution config: ExecutionOptions(resource_limits=ExecutionResources(cpu=None, gpu=None, object_store_memory=None), locality_with_output=False, preserve_order=False, actor_locality_enabled=True, verbose_progress=False)
2023-07-06 18:33:28,114 INFO streaming_executor.py:95 -- Tip: For detailed progress reporting, run `ray.data.DataContext.get_current().execution_options.verbose_progress = True`
2023-07-06 18:33:28,150 INFO actor_pool_map_operator.py:117 -- MapBatches(<lambda>)->MapBatches(Predict): Waiting for 1 pool actors to start...
PREDICTED LABELS
{'predictions': 1}
{'predictions': 1}
{'predictions': 0}
{'predictions': 1}
{'predictions': 1}
{'predictions': 1}
{'predictions': 1}
{'predictions': 1}
{'predictions': 0}
{'predictions': 1}
{'predictions': 0}
{'predictions': 1}
{'predictions': 1}
{'predictions': 1}
{'predictions': 1}
{'predictions': 0}
{'predictions': 0}
{'predictions': 1}
{'predictions': 1}
{'predictions': 0}