import warnings
import loggingMLFlow
warnings.simplefilter('ignore')
logging.getLogger('statsforecast').setLevel(logging.ERROR)
logging.getLogger("mlflow").setLevel(logging.ERROR)使用 MLFlow 运行 Statsforecast。
MLFlow 是一个开源实验跟踪系统,帮助数据科学家管理从实验到生产的模型生命周期。Statsforecast 的 MLFlow 集成可在 MLFlow 库中找到,该库包含对热门机器学习库的 MLFlow 支持。
from statsforecast.utils import generate_seriesseries = generate_series(5, min_length=50, max_length=50, equal_ends=True, n_static_features=1)
series.head()| unique_id | ds | y | static_0 | |
|---|---|---|---|---|
| 0 | 0 | 2000-01-01 | 12.073897 | 43 |
| 1 | 0 | 2000-01-02 | 59.734166 | 43 |
| 2 | 0 | 2000-01-03 | 101.260794 | 43 |
| 3 | 0 | 2000-01-04 | 143.987430 | 43 |
| 4 | 0 | 2000-01-05 | 185.320406 | 43 |
对于下一部分,需要mlflow和mlflavors。使用以下命令进行安装:
pip install mlflow mlflavors模型日志记录
import pandas as pd
import mlflow
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error
from statsforecast import StatsForecast
from statsforecast.models import AutoARIMA
import mlflavors
import requestsARTIFACT_PATH = "model"
DATA_PATH = "./data"
HORIZON = 7
LEVEL = [90]
with mlflow.start_run() as run:
series = generate_series(5, min_length=50, max_length=50, equal_ends=True, n_static_features=1)
train_df = series.groupby('unique_id').head(43)
test_df = series.groupby('unique_id').tail(7)
X_test = test_df.drop(columns=["y"])
y_test = test_df[["y"]]
models = [AutoARIMA(season_length=7)]
sf = StatsForecast(df=train_df, models=models, freq="D", n_jobs=-1)
sf.fit()
# 评估模型
y_pred = sf.predict(h=HORIZON, X_df=X_test, level=LEVEL)["AutoARIMA"]
metrics = {
"mae": mean_absolute_error(y_test, y_pred),
"mape": mean_absolute_percentage_error(y_test, y_pred),
}
print(f"Metrics: \n{metrics}")
# 日志指标
mlflow.log_metrics(metrics)
# 使用pickle序列化的日志模型(默认)。
mlflavors.statsforecast.log_model(
statsforecast_model=sf,
artifact_path=ARTIFACT_PATH,
serialization_format="pickle",
)
model_uri = mlflow.get_artifact_uri(ARTIFACT_PATH)
print(f"\nMLflow run id:\n{run.info.run_id}")Metrics:
{'mae': 6.712853959225143, 'mape': 0.11719246764336884}
2023/10/20 23:45:36 WARNING mlflow.utils.environment: Encountered an unexpected error while inferring pip requirements (model URI: /var/folders/w2/91_v34nx0xs2npnl3zsl9tmm0000gn/T/tmpt4686vpu/model/model.pkl, flavor: statsforecast), fall back to return ['statsforecast==1.6.0']. Set logging level to DEBUG to see the full traceback.
MLflow run id:
0319bbd664424fcd88d6c532e3ecac77
查看实验
要查看新创建的实验和记录的工件,请打开 MLflow UI:
mlflow ui加载 Statsforecast 模型
可以使用 mlflow.statsforecast.load_model 函数从 MLFlow 注册表加载 statsforecast 模型,并用于生成预测。
loaded_model = mlflavors.statsforecast.load_model(model_uri=model_uri)
results = loaded_model.predict(h=HORIZON, X_df=X_test, level=LEVEL)
results.head()| ds | AutoARIMA | AutoARIMA-lo-90 | AutoARIMA-hi-90 | |
|---|---|---|---|---|
| unique_id | ||||
| 0 | 2000-02-13 | 55.894432 | 44.343880 | 67.444984 |
| 0 | 2000-02-14 | 97.818054 | 86.267502 | 109.368607 |
| 0 | 2000-02-15 | 146.745422 | 135.194870 | 158.295975 |
| 0 | 2000-02-16 | 188.888336 | 177.337784 | 200.438904 |
| 0 | 2000-02-17 | 231.493637 | 219.943085 | 243.044189 |
使用 pyfunc 加载模型
Pyfunc 是 MLFlow 模型的另一种接口,提供了加载和保存模型的工具。此代码在进行预测时与上述内容等效。
loaded_pyfunc = mlflavors.statsforecast.pyfunc.load_model(model_uri=model_uri)
# 将测试数据转换为二维的 numpy 数组,以便可以通过 pyfunc 进行预测。
# 单行Pandas DataFrame配置参数
X_test_array = X_test.to_numpy()
# 创建配置DataFrame
predict_conf = pd.DataFrame(
[
{
"X": X_test_array,
"X_cols": X_test.columns,
"X_dtypes": list(X_test.dtypes),
"h": HORIZON,
"level": LEVEL,
}
]
)
pyfunc_result = loaded_pyfunc.predict(predict_conf)
pyfunc_result.head()| ds | AutoARIMA | AutoARIMA-lo-90 | AutoARIMA-hi-90 | |
|---|---|---|---|---|
| unique_id | ||||
| 0 | 2000-02-13 | 55.894432 | 44.343880 | 67.444984 |
| 0 | 2000-02-14 | 97.818054 | 86.267502 | 109.368607 |
| 0 | 2000-02-15 | 146.745422 | 135.194870 | 158.295975 |
| 0 | 2000-02-16 | 188.888336 | 177.337784 | 200.438904 |
| 0 | 2000-02-17 | 231.493637 | 219.943085 | 243.044189 |
模型服务
本节展示了如何将 pyfunc 类型的模型服务到本地 REST API 端点,并随后请求已服务模型的预测。要服务模型,请运行以下命令,替换执行训练代码时打印的运行 ID。
mlflow models serve -m runs:/<run_id>/model --env-manager local --host 127.0.0.1运行此命令后,可以运行以下代码发送请求。
HORIZON = 7
LEVEL = [90, 95]
# 定义本地主机和端点URL
host = "127.0.0.1"
url = f"http://{host}:5000/invocations"
# 将日期时间转换为字符串以进行JSON序列化
X_test_pyfunc = X_test.copy()
X_test_pyfunc["ds"] = X_test_pyfunc["ds"].dt.strftime(date_format="%Y-%m-%d")
# 转换为列表以进行 JSON 序列化
X_test_list = X_test_pyfunc.to_numpy().tolist()
# 将索引转换为字符串列表以进行 JSON 序列化
X_cols = list(X_test.columns)
# 将数据类型转换为字符串以进行JSON序列化
X_dtypes = [str(dtype) for dtype in list(X_test.dtypes)]
predict_conf = pd.DataFrame(
[
{
"X": X_test_list,
"X_cols": X_cols,
"X_dtypes": X_dtypes,
"h": HORIZON,
"level": LEVEL,
}
]
)
# 使用pandas DataFrame以拆分方向创建字典
json_data = {"dataframe_split": predict_conf.to_dict(orient="split")}
# 评分模型
response = requests.post(url, json=json_data)pd.DataFrame(response.json()['predictions']).head()| ds | AutoARIMA | AutoARIMA-lo-95 | AutoARIMA-lo-90 | AutoARIMA-hi-90 | AutoARIMA-hi-95 | |
|---|---|---|---|---|---|---|
| 0 | 2000-02-13T00:00:00 | 55.894432 | 42.131100 | 44.343880 | 67.444984 | 69.657768 |
| 1 | 2000-02-14T00:00:00 | 97.818054 | 84.054718 | 86.267502 | 109.368607 | 111.581390 |
| 2 | 2000-02-15T00:00:00 | 146.745422 | 132.982086 | 135.194870 | 158.295975 | 160.508759 |
| 3 | 2000-02-16T00:00:00 | 188.888336 | 175.125015 | 177.337784 | 200.438904 | 202.651672 |
| 4 | 2000-02-17T00:00:00 | 231.493637 | 217.730301 | 219.943085 | 243.044189 | 245.256973 |
Give us a ⭐ on Github