霍普菲尔德

torchhd.memory.hopfield(query: Tensor, memory: Tensor, kappa: int | None = None) Tensor[来源]

经典霍普菲尔德网络

Parameters:
  • query (Tensor) – 用于内存查找的查询向量。

  • memory (Tensor) – 用于内存查找的内存项。

Shapes:
  • 查询: \((*, d)\)

  • 内存:\((n, d)\)

  • 结果: \((*, d)\)

Examples::
>>> items = torchhd.random(6, 512)
>>> read = memory.hopfield(items, items).sign()
>>> torchhd.cosine_similarity(read, items)
tensor([[ 1.0000,  0.0156, -0.0039, -0.0742,  0.0000, -0.0195],
        [ 0.0156,  1.0000, -0.0352, -0.0586,  0.0000, -0.0039],
        [-0.0039, -0.0352,  1.0000,  0.0156,  0.0820, -0.0234],
        [-0.0742, -0.0586,  0.0156,  1.0000, -0.0039,  0.0000],
        [ 0.0000,  0.0000,  0.0820, -0.0039,  1.0000,  0.0195],
        [-0.0195, -0.0039, -0.0234,  0.0000,  0.0195,  1.0000]])