tslearn.utils.from_tsfresh_dataset¶
- tslearn.utils.from_tsfresh_dataset(X)[source]¶
将兼容tsfresh的数据集转换为tslearn数据集。
- Parameters:
- X: pandas data-frame
tsfresh格式的数据集(“扁平”数据框,如那里所述)
- Returns:
- array, shape=(n_ts, sz, d)
tslearn格式化的数据集。 列顺序与原始数据框中的顺序保持一致。
注释
从/到 tsfresh 格式的转换需要安装 pandas。
示例
>>> import pandas as pd >>> tsfresh_df = pd.DataFrame(columns=["id", "time", "a", "b"]) >>> tsfresh_df["id"] = [0, 0, 0] >>> tsfresh_df["time"] = [0, 1, 2] >>> tsfresh_df["a"] = [-1, 4, 7] >>> tsfresh_df["b"] = [8, -3, 2] >>> tslearn_arr = from_tsfresh_dataset(tsfresh_df) >>> tslearn_arr.shape (1, 3, 2) >>> tsfresh_df = pd.DataFrame(columns=["id", "time", "a"]) >>> tsfresh_df["id"] = [0, 0, 0, 1, 1] >>> tsfresh_df["time"] = [0, 1, 2, 0, 1] >>> tsfresh_df["a"] = [-1, 4, 7, 9, 1] >>> tslearn_arr = from_tsfresh_dataset(tsfresh_df) >>> tslearn_arr.shape (2, 3, 1) >>> tsfresh_df = numpy.random.randn(10, 1, 16) >>> from_tsfresh_dataset( ... tsfresh_df ... ) Traceback (most recent call last): ... ValueError: X is not a valid input tsfresh array.