在AWS Lambda中使用uv
AWS Lambda 是一项无服务器计算服务,可让您无需预置或管理服务器即可运行代码。
你可以使用uv与AWS Lambda来管理你的Python依赖项,构建你的部署包,并部署你的Lambda函数。
提示
查看uv-aws-lambda-example项目,了解使用uv将应用程序部署到AWS Lambda时的最佳实践示例。
入门指南
首先,假设我们有一个结构如下的最小化FastAPI应用:
其中 pyproject.toml 文件包含:
[project]
name = "uv-aws-lambda-example"
version = "0.1.0"
requires-python = ">=3.13"
dependencies = [
# FastAPI is a modern web framework for building APIs with Python.
"fastapi",
# Mangum is a library that adapts ASGI applications to AWS Lambda and API Gateway.
"mangum",
]
[dependency-groups]
dev = [
# In development mode, include the FastAPI development server.
"fastapi[standard]>=0.115",
]
而 main.py 文件包含:
import logging
from fastapi import FastAPI
from mangum import Mangum
logger = logging.getLogger()
logger.setLevel(logging.INFO)
app = FastAPI()
handler = Mangum(app)
@app.get("/")
async def root() -> str:
return "Hello, world!"
我们可以在本地运行此应用程序:
从这里开始,在网页浏览器中打开 http://127.0.0.1:8000/ 将会显示"Hello, world!"
部署Docker镜像
要部署到AWS Lambda,我们需要构建一个容器镜像,该镜像需包含应用程序代码和所有依赖项,并输出到单一目录中。
我们将遵循Docker指南中概述的原则(特别是多阶段构建),以确保最终镜像尽可能小巧且缓存友好。
在第一阶段,我们将用一个目录存放所有应用程序代码和依赖项。在第二阶段,我们会将这个目录复制到最终镜像中,同时省略构建工具和其他不必要的文件。
FROM ghcr.io/astral-sh/uv:0.7.6 AS uv
# First, bundle the dependencies into the task root.
FROM public.ecr.aws/lambda/python:3.13 AS builder
# Enable bytecode compilation, to improve cold-start performance.
ENV UV_COMPILE_BYTECODE=1
# Disable installer metadata, to create a deterministic layer.
ENV UV_NO_INSTALLER_METADATA=1
# Enable copy mode to support bind mount caching.
ENV UV_LINK_MODE=copy
# Bundle the dependencies into the Lambda task root via `uv pip install --target`.
#
# Omit any local packages (`--no-emit-workspace`) and development dependencies (`--no-dev`).
# This ensures that the Docker layer cache is only invalidated when the `pyproject.toml` or `uv.lock`
# files change, but remains robust to changes in the application code.
RUN --mount=from=uv,source=/uv,target=/bin/uv \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=uv.lock,target=uv.lock \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
uv export --frozen --no-emit-workspace --no-dev --no-editable -o requirements.txt && \
uv pip install -r requirements.txt --target "${LAMBDA_TASK_ROOT}"
FROM public.ecr.aws/lambda/python:3.13
# Copy the runtime dependencies from the builder stage.
COPY --from=builder ${LAMBDA_TASK_ROOT} ${LAMBDA_TASK_ROOT}
# Copy the application code.
COPY ./app ${LAMBDA_TASK_ROOT}/app
# Set the AWS Lambda handler.
CMD ["app.main.handler"]
提示
要部署到基于ARM架构的AWS Lambda运行时,请将public.ecr.aws/lambda/python:3.13替换为public.ecr.aws/lambda/python:3.13-arm64。
我们可以使用以下命令构建镜像,例如:
该Dockerfile结构的核心优势如下:
- 最小化镜像体积。 通过采用多阶段构建技术,我们可以确保最终镜像仅包含应用程序代码和依赖项。例如,uv二进制文件本身并不会打包进最终镜像。
- 最大化缓存复用。 通过将应用程序依赖项与应用程序代码分开安装,我们可以确保仅在依赖项变更时才会使Docker层缓存失效。
具体来说,在修改应用程序源代码后重新构建镜像可以复用缓存的层,从而实现毫秒级的构建速度:
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 1.31kB 0.0s
=> [internal] load metadata for public.ecr.aws/lambda/python:3.13 0.3s
=> [internal] load metadata for ghcr.io/astral-sh/uv:latest 0.3s
=> [internal] load .dockerignore 0.0s
=> => transferring context: 106B 0.0s
=> [uv 1/1] FROM ghcr.io/astral-sh/uv:latest@sha256:ea61e006cfec0e8d81fae901ad703e09d2c6cf1aa58abcb6507d124b50286f 0.0s
=> [builder 1/2] FROM public.ecr.aws/lambda/python:3.13@sha256:f5b51b377b80bd303fe8055084e2763336ea8920d12955b23ef 0.0s
=> [internal] load build context 0.0s
=> => transferring context: 185B 0.0s
=> CACHED [builder 2/2] RUN --mount=from=uv,source=/uv,target=/bin/uv --mount=type=cache,target=/root/.cache/u 0.0s
=> CACHED [stage-2 2/3] COPY --from=builder /var/task /var/task 0.0s
=> CACHED [stage-2 3/3] COPY ./app /var/task 0.0s
=> exporting to image 0.0s
=> => exporting layers 0.0s
=> => writing image sha256:6f8f9ef715a7cda466b677a9df4046ebbb90c8e88595242ade3b4771f547652d 0.0
构建完成后,我们可以将镜像推送到 Elastic Container Registry (ECR),例如:
$ aws ecr get-login-password --region region | docker login --username AWS --password-stdin aws_account_id.dkr.ecr.region.amazonaws.com
$ docker tag fastapi-app:latest aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest
$ docker push aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest
最后,我们可以使用AWS管理控制台或AWS CLI将镜像部署到AWS Lambda,例如:
$ aws lambda create-function \
--function-name myFunction \
--package-type Image \
--code ImageUri=aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest \
--role arn:aws:iam::111122223333:role/my-lambda-role
其中 执行角色 是通过以下方式创建的:
$ aws iam create-role \
--role-name my-lambda-role \
--assume-role-policy-document '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action": "sts:AssumeRole"}]}'
或者,使用以下方式更新现有函数:
$ aws lambda update-function-code \
--function-name myFunction \
--image-uri aws_account_id.dkr.ecr.region.amazonaws.com/fastapi-app:latest \
--publish
要测试Lambda函数,我们可以通过AWS管理控制台或AWS CLI来调用它,例如:
$ aws lambda invoke \
--function-name myFunction \
--payload file://event.json \
--cli-binary-format raw-in-base64-out \
response.json
{
"StatusCode": 200,
"ExecutedVersion": "$LATEST"
}
其中 event.json 包含要传递给 Lambda 函数的事件负载:
而 response.json 包含来自 Lambda 函数的响应:
{
"statusCode": 200,
"headers": {
"content-length": "14",
"content-type": "application/json"
},
"multiValueHeaders": {},
"body": "\"Hello, world!\"",
"isBase64Encoded": false
}
详情请参阅 AWS Lambda文档。
工作区支持
如果项目包含本地依赖项(例如通过Workspaces),这些依赖项也必须包含在部署包中。
我们将从扩展上述示例开始,加入对本地开发的名为library的库的依赖。
首先,我们将创建这个库本身:
在project目录中运行uv init会自动将project转换为工作区,并将library添加为工作区成员:
[project]
name = "uv-aws-lambda-example"
version = "0.1.0"
requires-python = ">=3.13"
dependencies = [
# FastAPI is a modern web framework for building APIs with Python.
"fastapi",
# A local library.
"library",
# Mangum is a library that adapts ASGI applications to AWS Lambda and API Gateway.
"mangum",
]
[dependency-groups]
dev = [
# In development mode, include the FastAPI development server.
"fastapi[standard]",
]
[tool.uv.workspace]
members = ["library"]
[tool.uv.sources]
lib = { workspace = true }
默认情况下,uv init --lib会创建一个导出hello函数的包。我们将修改应用程序源代码来调用该函数:
import logging
from fastapi import FastAPI
from mangum import Mangum
from library import hello
logger = logging.getLogger()
logger.setLevel(logging.INFO)
app = FastAPI()
handler = Mangum(app)
@app.get("/")
async def root() -> str:
return hello()
我们可以在本地运行修改后的应用程序:
并确认在网页浏览器中打开http://127.0.0.1:8000/会显示"来自库的问候!" (而不是"Hello, World!")
最后,我们将更新Dockerfile,将本地库包含在部署包中:
FROM ghcr.io/astral-sh/uv:0.7.6 AS uv
# First, bundle the dependencies into the task root.
FROM public.ecr.aws/lambda/python:3.13 AS builder
# Enable bytecode compilation, to improve cold-start performance.
ENV UV_COMPILE_BYTECODE=1
# Disable installer metadata, to create a deterministic layer.
ENV UV_NO_INSTALLER_METADATA=1
# Enable copy mode to support bind mount caching.
ENV UV_LINK_MODE=copy
# Bundle the dependencies into the Lambda task root via `uv pip install --target`.
#
# Omit any local packages (`--no-emit-workspace`) and development dependencies (`--no-dev`).
# This ensures that the Docker layer cache is only invalidated when the `pyproject.toml` or `uv.lock`
# files change, but remains robust to changes in the application code.
RUN --mount=from=uv,source=/uv,target=/bin/uv \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=uv.lock,target=uv.lock \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
uv export --frozen --no-emit-workspace --no-dev --no-editable -o requirements.txt && \
uv pip install -r requirements.txt --target "${LAMBDA_TASK_ROOT}"
# If you have a workspace, copy it over and install it too.
#
# By omitting `--no-emit-workspace`, `library` will be copied into the task root. Using a separate
# `RUN` command ensures that all third-party dependencies are cached separately and remain
# robust to changes in the workspace.
RUN --mount=from=uv,source=/uv,target=/bin/uv \
--mount=type=cache,target=/root/.cache/uv \
--mount=type=bind,source=uv.lock,target=uv.lock \
--mount=type=bind,source=pyproject.toml,target=pyproject.toml \
--mount=type=bind,source=library,target=library \
uv export --frozen --no-dev --no-editable -o requirements.txt && \
uv pip install -r requirements.txt --target "${LAMBDA_TASK_ROOT}"
FROM public.ecr.aws/lambda/python:3.13
# Copy the runtime dependencies from the builder stage.
COPY --from=builder ${LAMBDA_TASK_ROOT} ${LAMBDA_TASK_ROOT}
# Copy the application code.
COPY ./app ${LAMBDA_TASK_ROOT}/app
# Set the AWS Lambda handler.
CMD ["app.main.handler"]
提示
要部署到基于ARM架构的AWS Lambda运行时,请将public.ecr.aws/lambda/python:3.13替换为public.ecr.aws/lambda/python:3.13-arm64。
从这里开始,我们可以像之前一样构建并部署更新后的镜像。
部署zip压缩包
AWS Lambda 也支持通过 zip 归档文件进行部署。对于简单的应用程序,zip 归档文件相比 Docker 镜像可能是一种更直接高效的部署方式;但 zip 归档文件的大小限制为 250 MB。
回到FastAPI示例,我们可以通过以下方式将应用程序依赖项打包到本地目录中,以便在AWS Lambda上使用:
$ uv export --frozen --no-dev --no-editable -o requirements.txt
$ uv pip install \
--no-installer-metadata \
--no-compile-bytecode \
--python-platform x86_64-manylinux2014 \
--python 3.13 \
--target packages \
-r requirements.txt
提示
要部署到基于ARM架构的AWS Lambda运行时,请将x86_64-manylinux2014替换为aarch64-manylinux2014。
根据 AWS Lambda文档,我们可以 将这些依赖项打包成zip文件,方法如下:
最后,我们可以将应用程序代码添加到zip压缩包中:
然后我们可以通过AWS管理控制台或AWS CLI将zip存档部署到AWS Lambda,例如:
$ aws lambda create-function \
--function-name myFunction \
--runtime python3.13 \
--zip-file fileb://package.zip \
--handler app.main.handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role
其中 执行角色 是通过以下方式创建的:
$ aws iam create-role \
--role-name my-lambda-role \
--assume-role-policy-document '{"Version": "2012-10-17", "Statement": [{ "Effect": "Allow", "Principal": {"Service": "lambda.amazonaws.com"}, "Action": "sts:AssumeRole"}]}'
或者,使用以下方式更新现有函数:
注意
默认情况下,AWS管理控制台假设Lambda入口点为lambda_function.lambda_handler。
如果您的应用程序使用不同的入口点,则需要在AWS管理控制台中进行修改。
例如,上述FastAPI应用程序使用app.main.handler。
要测试Lambda函数,我们可以通过AWS管理控制台或AWS CLI来调用它,例如:
$ aws lambda invoke \
--function-name myFunction \
--payload file://event.json \
--cli-binary-format raw-in-base64-out \
response.json
{
"StatusCode": 200,
"ExecutedVersion": "$LATEST"
}
其中 event.json 包含要传递给 Lambda 函数的事件负载:
而 response.json 包含来自 Lambda 函数的响应:
{
"statusCode": 200,
"headers": {
"content-length": "14",
"content-type": "application/json"
},
"multiValueHeaders": {},
"body": "\"Hello, world!\"",
"isBase64Encoded": false
}
使用Lambda层
AWS Lambda 还支持在使用 zip 归档文件时部署多个组合的 Lambda 层。这些层在概念上类似于 Docker 镜像中的层,允许您 将应用程序代码与依赖项分离。
特别是,我们可以为应用程序依赖项创建一个lambda层,并将其附加到Lambda函数上,与应用程序代码本身分离。这种设置可以改善应用程序更新时的冷启动性能,因为依赖项层可以在多个部署中重复使用。
要创建Lambda层,我们将遵循类似的步骤,但会创建两个独立的zip压缩包:一个用于应用程序代码,另一个用于应用程序依赖项。
首先,我们将创建依赖层。Lambda层需要遵循略微不同的结构,因此我们将使用--prefix而不是--target:
$ uv export --frozen --no-dev --no-editable -o requirements.txt
$ uv pip install \
--no-installer-metadata \
--no-compile-bytecode \
--python-platform x86_64-manylinux2014 \
--python 3.13 \
--prefix packages \
-r requirements.txt
我们将按照Lambda层的预期布局压缩依赖项:
提示
要生成确定性zip压缩包,可以考虑向zip命令传递-X参数,以排除扩展属性和文件系统元数据。
并发布Lambda层:
$ aws lambda publish-layer-version --layer-name dependencies-layer \
--zip-file fileb://layer_content.zip \
--compatible-runtimes python3.13 \
--compatible-architectures "x86_64"
我们可以像前一个示例那样创建Lambda函数,省略依赖项:
$ # Zip the application code.
$ zip -r app.zip app
$ # Create the Lambda function.
$ aws lambda create-function \
--function-name myFunction \
--runtime python3.13 \
--zip-file fileb://app.zip \
--handler app.main.handler \
--role arn:aws:iam::111122223333:role/service-role/my-lambda-role
最后,我们可以使用publish-layer-version步骤返回的ARN将依赖层附加到Lambda函数上:
$ aws lambda update-function-configuration --function-name myFunction \
--cli-binary-format raw-in-base64-out \
--layers "arn:aws:lambda:region:111122223333:layer:dependencies-layer:1"
当应用程序依赖项发生变化时,可以通过重新发布层并更新Lambda函数配置,独立于应用程序更新该层:
$ # Update the dependencies in the layer.
$ aws lambda publish-layer-version --layer-name dependencies-layer \
--zip-file fileb://layer_content.zip \
--compatible-runtimes python3.13 \
--compatible-architectures "x86_64"
$ # Update the Lambda function configuration.
$ aws lambda update-function-configuration --function-name myFunction \
--cli-binary-format raw-in-base64-out \
--layers "arn:aws:lambda:region:111122223333:layer:dependencies-layer:2"