构建运行中的管道

让我们看另一个例子:我们需要从在线托管的文件中获取一些数据,并将其插入到本地数据库中。在插入时还需要考虑去除重复行。

请注意: 本教程中使用的操作符已弃用。 其推荐的替代方案SQLExecuteQueryOperator功能类似。 您可能会发现此指南有所帮助。

初始设置

我们需要安装Docker,因为本示例将使用在Docker中运行Airflow的流程。 以下步骤应该足够,但完整说明请参阅快速入门文档。

# Download the docker-compose.yaml file
curl -LfO 'https://airflow.apache.org/docs/apache-airflow/stable/docker-compose.yaml'

# Make expected directories and set an expected environment variable
mkdir -p ./dags ./logs ./plugins
echo -e "AIRFLOW_UID=$(id -u)" > .env

# Initialize the database
docker compose up airflow-init

# Start up all services
docker compose up

所有服务启动后,可以通过以下地址访问web界面:http://localhost:8080。默认账户的用户名是airflow,密码为airflow

我们还需要创建一个到postgres数据库的连接。要通过网页界面创建连接,请从"Admin"菜单中选择"Connections",然后点击加号"Add a new record"来向连接列表中添加新记录。

按如下所示填写字段。注意Connection Id值,我们将把它作为postgres_conn_id参数的参数值传递。

  • 连接ID: tutorial_pg_conn

  • 连接类型: postgres

  • 主机: postgres

  • Schema: airflow

  • 登录: airflow

  • 密码: airflow

  • 端口: 5432

测试您的连接,如果测试成功,请保存您的连接。

数据表创建任务

我们可以使用PostgresOperator来定义在Postgres数据库中创建表的任务。

我们将创建一个表来简化数据清洗步骤(employees_temp),另一个表用于存储清洗后的数据(employees)。

from airflow.providers.postgres.operators.postgres import PostgresOperator

create_employees_table = PostgresOperator(
    task_id="create_employees_table",
    postgres_conn_id="tutorial_pg_conn",
    sql="""
        CREATE TABLE IF NOT EXISTS employees (
            "Serial Number" NUMERIC PRIMARY KEY,
            "Company Name" TEXT,
            "Employee Markme" TEXT,
            "Description" TEXT,
            "Leave" INTEGER
        );""",
)

create_employees_temp_table = PostgresOperator(
    task_id="create_employees_temp_table",
    postgres_conn_id="tutorial_pg_conn",
    sql="""
        DROP TABLE IF EXISTS employees_temp;
        CREATE TABLE employees_temp (
            "Serial Number" NUMERIC PRIMARY KEY,
            "Company Name" TEXT,
            "Employee Markme" TEXT,
            "Description" TEXT,
            "Leave" INTEGER
        );""",
)

可选:使用文件中的SQL

如果您希望将这些SQL语句从DAG中抽象出来,可以将这些SQL语句文件移动到dags/目录下的某个位置,并将sql文件路径(相对于dags/)传递给sql关键字参数。例如对于employees,可以在dags/中创建一个sql目录,将employees的DDL放入dags/sql/employees_schema.sql,然后将PostgresOperator()修改为:

create_employees_table = PostgresOperator(
    task_id="create_employees_table",
    postgres_conn_id="tutorial_pg_conn",
    sql="sql/employees_schema.sql",
)

并对 employees_temp 表重复此操作。

数据检索任务

在这里我们获取数据,将其保存到Airflow实例上的一个文件中,然后将数据从该文件加载到一个中间表,以便执行数据清洗步骤。

import os
import requests
from airflow.decorators import task
from airflow.providers.postgres.hooks.postgres import PostgresHook


@task
def get_data():
    # NOTE: configure this as appropriate for your airflow environment
    data_path = "/opt/airflow/dags/files/employees.csv"
    os.makedirs(os.path.dirname(data_path), exist_ok=True)

    url = "https://raw.githubusercontent.com/apache/airflow/main/docs/apache-airflow/tutorial/pipeline_example.csv"

    response = requests.request("GET", url)

    with open(data_path, "w") as file:
        file.write(response.text)

    postgres_hook = PostgresHook(postgres_conn_id="tutorial_pg_conn")
    conn = postgres_hook.get_conn()
    cur = conn.cursor()
    with open(data_path, "r") as file:
        cur.copy_expert(
            "COPY employees_temp FROM STDIN WITH CSV HEADER DELIMITER AS ',' QUOTE '\"'",
            file,
        )
    conn.commit()

数据合并任务

这里我们从检索到的数据中选择完全唯一的记录,然后检查是否有任何员工的序列号已存在于数据库中(如果存在,则用新数据更新这些记录)。

from airflow.decorators import task
from airflow.providers.postgres.hooks.postgres import PostgresHook


@task
def merge_data():
    query = """
        INSERT INTO employees
        SELECT *
        FROM (
            SELECT DISTINCT *
            FROM employees_temp
        ) t
        ON CONFLICT ("Serial Number") DO UPDATE
        SET
              "Employee Markme" = excluded."Employee Markme",
              "Description" = excluded."Description",
              "Leave" = excluded."Leave";
    """
    try:
        postgres_hook = PostgresHook(postgres_conn_id="tutorial_pg_conn")
        conn = postgres_hook.get_conn()
        cur = conn.cursor()
        cur.execute(query)
        conn.commit()
        return 0
    except Exception as e:
        return 1

完成我们的DAG

我们已经开发了任务,现在需要将它们封装在一个DAG中,这使我们能够定义任务的运行时间和方式,并声明任务之间的依赖关系。下面的DAG配置用于:

  • 从2021年1月1日开始,每天午夜运行

  • 仅在遗漏天数的情况下运行一次,并且

  • 60分钟后超时

process_employees DAG定义的最后一行我们可以看到:

[create_employees_table, create_employees_temp_table] >> get_data() >> merge_data()
  • merge_data() 任务依赖于 get_data() 任务

  • get_data() 依赖于 create_employees_tablecreate_employees_temp_table 两个任务,并且

  • create_employees_tablecreate_employees_temp_table 任务可以独立运行。

将所有部分整合在一起,我们就完成了DAG的构建。

import datetime
import pendulum
import os

import requests
from airflow.decorators import dag, task
from airflow.providers.postgres.hooks.postgres import PostgresHook
from airflow.providers.postgres.operators.postgres import PostgresOperator


@dag(
    dag_id="process_employees",
    schedule_interval="0 0 * * *",
    start_date=pendulum.datetime(2021, 1, 1, tz="UTC"),
    catchup=False,
    dagrun_timeout=datetime.timedelta(minutes=60),
)
def ProcessEmployees():
    create_employees_table = PostgresOperator(
        task_id="create_employees_table",
        postgres_conn_id="tutorial_pg_conn",
        sql="""
            CREATE TABLE IF NOT EXISTS employees (
                "Serial Number" NUMERIC PRIMARY KEY,
                "Company Name" TEXT,
                "Employee Markme" TEXT,
                "Description" TEXT,
                "Leave" INTEGER
            );""",
    )

    create_employees_temp_table = PostgresOperator(
        task_id="create_employees_temp_table",
        postgres_conn_id="tutorial_pg_conn",
        sql="""
            DROP TABLE IF EXISTS employees_temp;
            CREATE TABLE employees_temp (
                "Serial Number" NUMERIC PRIMARY KEY,
                "Company Name" TEXT,
                "Employee Markme" TEXT,
                "Description" TEXT,
                "Leave" INTEGER
            );""",
    )

    @task
    def get_data():
        # NOTE: configure this as appropriate for your airflow environment
        data_path = "/opt/airflow/dags/files/employees.csv"
        os.makedirs(os.path.dirname(data_path), exist_ok=True)

        url = "https://raw.githubusercontent.com/apache/airflow/main/docs/apache-airflow/tutorial/pipeline_example.csv"

        response = requests.request("GET", url)

        with open(data_path, "w") as file:
            file.write(response.text)

        postgres_hook = PostgresHook(postgres_conn_id="tutorial_pg_conn")
        conn = postgres_hook.get_conn()
        cur = conn.cursor()
        with open(data_path, "r") as file:
            cur.copy_expert(
                "COPY employees_temp FROM STDIN WITH CSV HEADER DELIMITER AS ',' QUOTE '\"'",
                file,
            )
        conn.commit()

    @task
    def merge_data():
        query = """
            INSERT INTO employees
            SELECT *
            FROM (
                SELECT DISTINCT *
                FROM employees_temp
            ) t
            ON CONFLICT ("Serial Number") DO UPDATE
            SET
              "Employee Markme" = excluded."Employee Markme",
              "Description" = excluded."Description",
              "Leave" = excluded."Leave";
        """
        try:
            postgres_hook = PostgresHook(postgres_conn_id="tutorial_pg_conn")
            conn = postgres_hook.get_conn()
            cur = conn.cursor()
            cur.execute(query)
            conn.commit()
            return 0
        except Exception as e:
            return 1

    [create_employees_table, create_employees_temp_table] >> get_data() >> merge_data()


dag = ProcessEmployees()

将此代码保存到/dags文件夹中的python文件(例如dags/process_employees.py),(经过短暂延迟后),process_employees DAG将会出现在web界面的可用DAG列表中。

../_images/tutorial-pipeline-1.png

你可以通过取消暂停(通过左侧的滑块)并运行(通过操作下的运行按钮)来触发process_employees DAG。

../_images/tutorial-pipeline-2.png

process_employees DAG的网格视图中,我们可以看到所有任务在所有执行运行中都成功运行。成功!

下一步是什么?

您现在已经在使用Docker Compose在Airflow中运行了一个管道。以下是您接下来可能想做的几件事:

另请参阅

这篇内容对您有帮助吗?