cdlib.viz.plot_event_radar¶
- cdlib.viz.plot_event_radar(lc: LifeCycle, set_name: str, direction: str, min_branch_size: int = 1, rescale: bool = True, color: str = 'green', ax: object | None = None)¶
绘制给定事件集的事件权重雷达图。
- Parameters:
lc – 生命周期对象
set_name – 事件集名称,例如“0_2”
direction – 事件集的方向,可以是“+”或“-”
min_branch_size – 被视为分支的最小大小,默认为1
rescale – 将雷达重新缩放到最大值,默认为 True
color – 雷达的颜色,默认为“green”
ax – matplotlib轴,默认为None
- Returns:
matplotlib 轴
- Example:
>>> from cdlib import TemporalClustering, LifeCycle >>> from cdlib import algorithms >>> from cdlib.viz import plot_flow >>> from networkx.generators.community import LFR_benchmark_graph >>> tc = TemporalClustering() >>> for t in range(0, 10): >>> g = LFR_benchmark_graph( >>> n=250, >>> tau1=3, >>> tau2=1.5, >>> mu=0.1, >>> average_degree=5, >>> min_community=20, >>> seed=10, >>> ) >>> coms = algorithms.louvain(g) # here any CDlib algorithm can be applied >>> tc.add_clustering(coms, t) >>> events = LifeCycle(tc) >>> events.compute_events("facets") >>> fig = plot_event_radar(events, "0_2", "+") >>> fig.show()