dgl.DGLGraph.prop_edges
- DGLGraph.prop_edges(edges_generator, message_func, reduce_func, apply_node_func=None, etype=None)[source]
通过顺序触发边上的
send_and_recv()
,使用图遍历传播消息。遍历顺序由
edges_generator
指定。它生成边缘前沿。边缘前沿应为有效边缘类型。更多详情请参见send()
。同一前沿中的边将一起触发,而不同前沿中的边将根据生成顺序触发。
- Parameters:
edges_generator (generator) – 边缘前沿的生成器。
message_func (dgl.function.BuiltinFunction or callable) – The message function to generate messages along the edges. It must be either a DGL Built-in Function or a User-defined Functions.
reduce_func (dgl.function.BuiltinFunction or callable) – The reduce function to aggregate the messages. It must be either a DGL Built-in Function or a User-defined Functions.
apply_node_func (callable, optional) – An optional apply function to further update the node features after the message reduction. It must be a User-defined Functions.
etype (str or (str, str, str), optional) –
The type name of the edges. The allowed type name formats are:
(str, str, str)
for source node type, edge type and destination node type.or one
str
edge type name if the name can uniquely identify a triplet format in the graph.
Can be omitted if the graph has only one type of edges.
示例
>>> import torch >>> import dgl >>> import dgl.function as fn
实例化一个异构图并执行多轮消息传递。
>>> g = dgl.heterograph({('user', 'follows', 'user'): ([0, 1, 2, 3], [2, 3, 4, 4])}) >>> g.nodes['user'].data['h'] = torch.tensor([[1.], [2.], [3.], [4.], [5.]]) >>> g['follows'].prop_edges([[0, 1], [2, 3]], fn.copy_u('h', 'm'), ... fn.sum('m', 'h'), etype='follows') >>> g.nodes['user'].data['h'] tensor([[1.], [2.], [1.], [2.], [3.]])
另请参阅