FB15k237数据集
- class dgl.data.FB15k237Dataset(reverse=True, raw_dir=None, force_reload=False, verbose=True, transform=None)[source]
Bases:
KnowledgeGraphDataset
FB15k237链接预测数据集。
FB15k-237 是 FB15k 的一个子集,其中移除了反向关系。在创建数据集时,默认会为每条边创建一个具有反向关系类型的反向边。
FB15k237 数据集统计:
节点数:14541
关系类型的数量:237
反向关系类型的数量:237
标签分割:
训练: 272115
有效:17535
测试: 20466
- Parameters:
reverse (bool) – Whether to add reverse edge. Default True.
raw_dir (str) – Raw file directory to download/contains the input data directory. Default: ~/.dgl/
force_reload (bool) – Whether to reload the dataset. Default: False
verbose (bool) – Whether to print out progress information. Default: True.
transform (callable, optional) – A transform that takes in a
DGLGraph
object and returns a transformed version. TheDGLGraph
object will be transformed before every access.
示例
>>> dataset = FB15k237Dataset() >>> g = dataset.graph >>> e_type = g.edata['e_type'] >>> >>> # get data split >>> train_mask = g.edata['train_mask'] >>> val_mask = g.edata['val_mask'] >>> test_mask = g.edata['test_mask'] >>> >>> train_set = th.arange(g.num_edges())[train_mask] >>> val_set = th.arange(g.num_edges())[val_mask] >>> >>> # build train_g >>> train_edges = train_set >>> train_g = g.edge_subgraph(train_edges, relabel_nodes=False) >>> train_g.edata['e_type'] = e_type[train_edges]; >>> >>> # build val_g >>> val_edges = th.cat([train_edges, val_edges]) >>> val_g = g.edge_subgraph(val_edges, relabel_nodes=False) >>> val_g.edata['e_type'] = e_type[val_edges]; >>> >>> # Train, Validation and Test
- __getitem__(idx)[source]
获取图形对象
- Parameters:
idx (int) – 项目索引,FB15k237Dataset 只有一个图对象
- Returns:
The graph contains
edata['e_type']
: edge relation typeedata['train_edge_mask']
: positive training edge maskedata['val_edge_mask']
: positive validation edge maskedata['test_edge_mask']
: positive testing edge maskedata['train_mask']
: training edge set mask (include reversed training edges)edata['val_mask']
: validation edge set mask (include reversed validation edges)edata['test_mask']
: testing edge set mask (include reversed testing edges)ndata['ntype']
: node type. All 0 in this dataset
- Return type: