dgl.khop_in_subgraph
- dgl.khop_in_subgraph(graph, nodes, k, *, relabel_nodes=True, store_ids=True, output_device=None)[source]
返回由指定节点的k跳入邻域诱导的子图。
我们可以通过包含一组节点的前驱节点来扩展这组节点。从指定的节点集开始,通过在子图中重复节点集扩展k次,然后创建一个节点诱导子图来获得k跳子图。除了提取子图外,DGL还将提取的节点和边的特征复制到结果图中。这种复制是惰性的,只有在需要时才会进行数据移动。
如果图是异质的,DGL会为每个关系提取一个子图并将它们组合成结果图。因此,结果图具有与输入图相同的关系集。
- Parameters:
graph (DGLGraph) – The input graph.
nodes (nodes or dict[str, nodes]) –
The starting node(s) to expand, which cannot have any duplicate value. The result will be undefined otherwise. The allowed formats are:
Int: ID of a single node.
Int Tensor: Each element is a node ID. The tensor must have the same device type and ID data type as the graph’s.
iterable[int]: Each element is a node ID.
If the graph is homogeneous, one can directly pass the above formats. Otherwise, the argument must be a dictionary with keys being node types and values being the node IDs in the above formats.
k (int) – The number of hops.
relabel_nodes (bool, optional) – If True, it will remove the isolated nodes and relabel the rest nodes in the extracted subgraph.
store_ids (bool, optional) – If True, it will store the raw IDs of the extracted edges in the
edata
of the resulting graph under namedgl.EID
; ifrelabel_nodes
isTrue
, it will also store the raw IDs of the extracted nodes in thendata
of the resulting graph under namedgl.NID
.output_device (Framework-specific device context object, optional) – The output device. Default is the same as the input graph.
- Returns:
DGLGraph – The subgraph.
Tensor or dict[str, Tensor], optional – The new IDs of the input
nodes
after node relabeling. This is returned only whenrelabel_nodes
is True. It is in the same form asnodes
.
注释
当k为1时,结果子图与通过
dgl.in_subgraph()
获得的子图不同。1跳入子图还包括邻居之间的边。示例
以下示例使用PyTorch后端。
>>> import dgl >>> import torch
从同质图中提取一个两跳子图。
>>> g = dgl.graph(([1, 1, 2, 3, 4], [0, 2, 0, 4, 2])) >>> g.edata['w'] = torch.arange(10).view(5, 2) >>> sg, inverse_indices = dgl.khop_in_subgraph(g, 0, k=2) >>> sg Graph(num_nodes=4, num_edges=4, ndata_schemes={'_ID': Scheme(shape=(), dtype=torch.int64)} edata_schemes={'w': Scheme(shape=(2,), dtype=torch.int64), '_ID': Scheme(shape=(), dtype=torch.int64)}) >>> sg.edges() (tensor([1, 1, 2, 3]), tensor([0, 2, 0, 2])) >>> sg.edata[dgl.EID] # original edge IDs tensor([0, 1, 2, 4]) >>> sg.edata['w'] # also extract the features tensor([[0, 1], [2, 3], [4, 5], [8, 9]]) >>> inverse_indices tensor([0])
从异质图中提取一个子图。
>>> g = dgl.heterograph({ ... ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 2, 1]), ... ('user', 'follows', 'user'): ([0, 1, 1], [1, 2, 2])}) >>> sg, inverse_indices = dgl.khop_in_subgraph(g, {'game': 0}, k=2) >>> sg Graph(num_nodes={'game': 1, 'user': 2}, num_edges={('user', 'follows', 'user'): 1, ('user', 'plays', 'game'): 2}, metagraph=[('user', 'user', 'follows'), ('user', 'game', 'plays')]) >>> inverse_indices {'game': tensor([0])}
另请参阅