DenseChebConv
- class dgl.nn.pytorch.conv.DenseChebConv(in_feats, out_feats, k, bias=True)[source]
Bases:
Module
Chebyshev Spectral Graph Convolution layer from Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
我们建议在密集图上应用ChebConv时使用此模块。
- Parameters:
示例
>>> import dgl >>> import numpy as np >>> import torch as th >>> from dgl.nn import DenseChebConv >>> >>> feat = th.ones(6, 10) >>> adj = th.tensor([[0., 0., 1., 0., 0., 0.], ... [1., 0., 0., 0., 0., 0.], ... [0., 1., 0., 0., 0., 0.], ... [0., 0., 1., 0., 0., 1.], ... [0., 0., 0., 1., 0., 0.], ... [0., 0., 0., 0., 0., 0.]]) >>> conv = DenseChebConv(10, 2, 2) >>> res = conv(adj, feat) >>> res tensor([[-3.3516, -2.4797], [-3.3516, -2.4797], [-3.3516, -2.4797], [-4.5192, -3.0835], [-2.5259, -2.0527], [-0.5327, -1.0219]], grad_fn=<AddBackward0>)
另请参阅
- forward(adj, feat, lambda_max=None)[source]
计算(密集)切比雪夫谱图卷积层
- Parameters:
adj (torch.Tensor) – 要应用图卷积的图的邻接矩阵, 应为形状 \((N, N)\),其中一行表示目标节点, 一列表示源节点。
feat (torch.Tensor) – The input feature of shape \((N, D_{in})\) where \(D_{in}\) is size of input feature, \(N\) is the number of nodes.
lambda_max (float 或 None, 可选) – 一个浮点值,表示给定图的最大特征值。 默认值:None。
- Returns:
The output feature of shape \((N, D_{out})\) where \(D_{out}\) is size of output feature.
- Return type:
torch.Tensor