dgl.svd_pe
- dgl.svd_pe(g, k, padding=False, random_flip=True)[source]
SVD-based Positional Encoding, as introduced in Global Self-Attention as a Replacement for Graph Convolution
此函数计算最大的\(k\)奇异值以及相应的左右奇异向量,以形成位置编码。
- Parameters:
g (DGLGraph) – 一个需要编码的DGLGraph,必须是一个同质图。
k (int) – Number of largest singular values and corresponding singular vectors used for positional encoding.
padding (bool, optional) – 如果为False,当\(k > N\)时,会引发错误, 其中\(N\)是
g
中的节点数。 如果为True,当\(k > N\)时,在编码向量的末尾添加零填充。 默认值:False。random_flip (bool, optional) – If True, randomly flip the signs of encoding vectors. Proposed to be activated during training for better generalization. Default : True.
- Returns:
返回基于SVD的位置编码,形状为 \((N, 2k)\)。
- Return type:
张量
示例
>>> import dgl
>>> g = dgl.graph(([0,1,2,3,4,2,3,1,4,0], [2,3,1,4,0,0,1,2,3,4])) >>> dgl.svd_pe(g, k=2, padding=False, random_flip=True) tensor([[-6.3246e-01, -1.1373e-07, -6.3246e-01, 0.0000e+00], [-6.3246e-01, 7.6512e-01, -6.3246e-01, -7.6512e-01], [ 6.3246e-01, 4.7287e-01, 6.3246e-01, -4.7287e-01], [-6.3246e-01, -7.6512e-01, -6.3246e-01, 7.6512e-01], [ 6.3246e-01, -4.7287e-01, 6.3246e-01, 4.7287e-01]])