添加自循环
- class dgl.transforms.AddSelfLoop(allow_duplicate=False, new_etypes=False, edge_feat_names=None, fill_data=1.0)[source]
Bases:
BaseTransform
为图中的每个节点添加自环并返回一个新图。
对于异构图,自环仅添加到源节点类型和目标节点类型相同的边类型中。
- Parameters:
allow_duplicate (bool, optional) – 如果为False,它将首先移除自环以防止重复的自环。
new_etypes (bool, 可选) – 如果为True,它将为每个节点类型添加一个边类型‘self’,该类型包含自环。
edge_feat_names (list[str], optional) – 要应用fill_data的自环特征的名称。如果为None,它将应用fill_data到所有自环特征。默认值:None。
fill_data (int, float or str, optional) –
The value to fill the self-loop features. Default: 1.
If
fill_data
isint
orfloat
, self-loop features will be directly given byfill_data
.if
fill_data
isstr
, self-loop features will be generated by aggregating the features of the incoming edges of the corresponding nodes. The supported aggregation are:'mean'
,'sum'
,'max'
,'min'
.
示例
>>> import dgl >>> from dgl import AddSelfLoop
案例1:为同构图添加自环
>>> transform = AddSelfLoop(fill_data='sum') >>> g = dgl.graph(([0, 0, 2], [2, 1, 0])) >>> g.edata['he'] = torch.arange(3).float().reshape(-1, 1) >>> new_g = transform(g) >>> print(new_g.edges()) (tensor([0, 0, 2, 0, 1, 2]), tensor([2, 1, 0, 0, 1, 2])) >>> print(new_g.edata('he')) tensor([[0.], [1.], [2.], [2.], [1.], [0.]])
案例2:为异构图添加自环
>>> transform = AddSelfLoop(fill_data='sum') >>> g = dgl.heterograph({ ... ('user', 'follows', 'user'): (torch.tensor([1, 2]), ... torch.tensor([0, 1])), ... ('user', 'plays', 'game'): (torch.tensor([0, 1]), ... torch.tensor([0, 1]))}) >>> g.edata['feat'] = {('user', 'follows', 'user'): torch.randn(2, 5), ... ('user', 'plays', 'game'): torch.randn(2, 5)} >>> g.edata['feat1'] = {('user', 'follows', 'user'): torch.randn(2, 15), ... ('user', 'plays', 'game'): torch.randn(2, 15)} >>> new_g = transform(g) >>> print(new_g.edges(etype='plays')) (tensor([0, 1]), tensor([0, 1])) >>> print(new_g.edges(etype='follows')) (tensor([1, 2, 0, 1, 2]), tensor([0, 1, 0, 1, 2])) >>> print(new_g.edata['feat'][('user', 'follows', 'user')].shape) torch.Size([5, 5])
案例3:为异构图添加自类型
>>> transform = AddSelfLoop(new_etypes=True) >>> new_g = transform(g) >>> print(new_g.edges(etype='follows')) (tensor([1, 2, 0, 1, 2]), tensor([0, 1, 0, 1, 2])) >>> print(new_g.edges(etype=('game', 'self', 'game'))) (tensor([0, 1]), tensor([0, 1]))