49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146 | class AnswerRelevancyEvaluator(BaseEvaluator):
"""
Answer relevancy evaluator.
Evaluates the relevancy of response to a query.
This evaluator considers the query string and response string.
Args:
raise_error(Optional[bool]):
Whether to raise an error if the response is invalid.
Defaults to False.
eval_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for evaluation.
refine_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for refinement.
"""
def __init__(
self,
llm: Optional[LLM] = None,
raise_error: bool = False,
eval_template: str | BasePromptTemplate | None = None,
score_threshold: float = _DEFAULT_SCORE_THRESHOLD,
parser_function: Callable[
[str], Tuple[Optional[float], Optional[str]]
] = _default_parser_function,
) -> None:
"""Init params."""
self._llm = llm or Settings.llm
self._raise_error = raise_error
self._eval_template: BasePromptTemplate
if isinstance(eval_template, str):
self._eval_template = PromptTemplate(eval_template)
else:
self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE
self.parser_function = parser_function
self.score_threshold = score_threshold
def _get_prompts(self) -> PromptDictType:
"""Get prompts."""
return {
"eval_template": self._eval_template,
"refine_template": self._refine_template,
}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
if "eval_template" in prompts:
self._eval_template = prompts["eval_template"]
if "refine_template" in prompts:
self._refine_template = prompts["refine_template"]
async def aevaluate(
self,
query: str | None = None,
response: str | None = None,
contexts: Sequence[str] | None = None,
sleep_time_in_seconds: int = 0,
**kwargs: Any,
) -> EvaluationResult:
"""Evaluate whether the response is relevant to the query."""
del kwargs # Unused
del contexts # Unused
if query is None or response is None:
raise ValueError("query and response must be provided")
await asyncio.sleep(sleep_time_in_seconds)
eval_response = await self._llm.apredict(
prompt=self._eval_template,
query=query,
response=response,
)
score, reasoning = self.parser_function(eval_response)
invalid_result, invalid_reason = False, None
if score is None and reasoning is None:
if self._raise_error:
raise ValueError("The response is invalid")
invalid_result = True
invalid_reason = "Unable to parse the output string."
if score:
score /= self.score_threshold
return EvaluationResult(
query=query,
response=response,
score=score,
feedback=eval_response,
invalid_result=invalid_result,
invalid_reason=invalid_reason,
)
|