66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177 | class ContextRelevancyEvaluator(BaseEvaluator):
"""
Context relevancy evaluator.
Evaluates the relevancy of retrieved contexts to a query.
This evaluator considers the query string and retrieved contexts.
Args:
raise_error(Optional[bool]):
Whether to raise an error if the response is invalid.
Defaults to False.
eval_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for evaluation.
refine_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for refinement.
"""
def __init__(
self,
llm: Optional[LLM] = None,
raise_error: bool = False,
eval_template: str | BasePromptTemplate | None = None,
refine_template: str | BasePromptTemplate | None = None,
score_threshold: float = _DEFAULT_SCORE_THRESHOLD,
parser_function: Callable[
[str], Tuple[Optional[float], Optional[str]]
] = _default_parser_function,
) -> None:
"""Init params."""
from llama_index.core import Settings
self._llm = llm or Settings.llm
self._raise_error = raise_error
self._eval_template: BasePromptTemplate
if isinstance(eval_template, str):
self._eval_template = PromptTemplate(eval_template)
else:
self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE
self._refine_template: BasePromptTemplate
if isinstance(refine_template, str):
self._refine_template = PromptTemplate(refine_template)
else:
self._refine_template = refine_template or DEFAULT_REFINE_TEMPLATE
self.parser_function = parser_function
self.score_threshold = score_threshold
def _get_prompts(self) -> PromptDictType:
"""Get prompts."""
return {
"eval_template": self._eval_template,
"refine_template": self._refine_template,
}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
if "eval_template" in prompts:
self._eval_template = prompts["eval_template"]
if "refine_template" in prompts:
self._refine_template = prompts["refine_template"]
async def aevaluate(
self,
query: str | None = None,
response: str | None = None,
contexts: Sequence[str] | None = None,
sleep_time_in_seconds: int = 0,
**kwargs: Any,
) -> EvaluationResult:
"""Evaluate whether the contexts is relevant to the query."""
del kwargs # Unused
del response # Unused
if query is None or contexts is None:
raise ValueError("Both query and contexts must be provided")
docs = [Document(text=context) for context in contexts]
index = SummaryIndex.from_documents(docs)
await asyncio.sleep(sleep_time_in_seconds)
query_engine = index.as_query_engine(
llm=self._llm,
text_qa_template=self._eval_template,
refine_template=self._refine_template,
)
response_obj = await query_engine.aquery(query)
raw_response_txt = str(response_obj)
score, reasoning = self.parser_function(raw_response_txt)
invalid_result, invalid_reason = False, None
if score is None and reasoning is None:
if self._raise_error:
raise ValueError("The response is invalid")
invalid_result = True
invalid_reason = "Unable to parse the output string."
if score:
score /= self.score_threshold
return EvaluationResult(
query=query,
contexts=contexts,
score=score,
feedback=raw_response_txt,
invalid_result=invalid_result,
invalid_reason=invalid_reason,
)
|