54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208 | class PandasQueryEngine(BaseQueryEngine):
"""
Pandas query engine.
Convert natural language to Pandas python code.
WARNING: This tool provides the Agent access to the `eval` function.
Arbitrary code execution is possible on the machine running this tool.
This tool is not recommended to be used in a production setting, and would
require heavy sandboxing or virtual machines
Args:
df (pd.DataFrame): Pandas dataframe to use.
instruction_str (Optional[str]): Instruction string to use.
instruction_parser (Optional[PandasInstructionParser]): The output parser
that takes the pandas query output string and returns a string.
It defaults to PandasInstructionParser and takes pandas DataFrame,
and any output kwargs as parameters.
eg.kwargs["max_colwidth"] = [int] is used to set the length of text
that each column can display during str(df). Set it to a higher number
if there is possibly long text in the dataframe.
pandas_prompt (Optional[BasePromptTemplate]): Pandas prompt to use.
output_kwargs (dict): Additional output processor kwargs for the
PandasInstructionParser.
head (int): Number of rows to show in the table context.
verbose (bool): Whether to print verbose output.
llm (Optional[LLM]): Language model to use.
synthesize_response (bool): Whether to synthesize a response from the
query results. Defaults to False.
response_synthesis_prompt (Optional[BasePromptTemplate]): A
Response Synthesis BasePromptTemplate to use for the query. Defaults to
DEFAULT_RESPONSE_SYNTHESIS_PROMPT.
Examples:
`pip install llama-index-experimental`
```python
import pandas as pd
from llama_index.experimental.query_engine.pandas import PandasQueryEngine
df = pd.DataFrame(
{
"city": ["Toronto", "Tokyo", "Berlin"],
"population": [2930000, 13960000, 3645000]
}
)
query_engine = PandasQueryEngine(df=df, verbose=True)
response = query_engine.query("What is the population of Tokyo?")
```
"""
def __init__(
self,
df: pd.DataFrame,
instruction_str: Optional[str] = None,
instruction_parser: Optional[PandasInstructionParser] = None,
pandas_prompt: Optional[BasePromptTemplate] = None,
output_kwargs: Optional[dict] = None,
head: int = 5,
verbose: bool = False,
llm: Optional[LLM] = None,
synthesize_response: bool = False,
response_synthesis_prompt: Optional[BasePromptTemplate] = None,
**kwargs: Any,
) -> None:
"""Initialize params."""
self._df = df
self._head = head
self._pandas_prompt = pandas_prompt or DEFAULT_PANDAS_PROMPT
self._instruction_str = instruction_str or DEFAULT_INSTRUCTION_STR
self._instruction_parser = instruction_parser or PandasInstructionParser(
df, output_kwargs or {}
)
self._verbose = verbose
self._llm = llm or Settings.llm
self._synthesize_response = synthesize_response
self._response_synthesis_prompt = (
response_synthesis_prompt or DEFAULT_RESPONSE_SYNTHESIS_PROMPT
)
super().__init__(callback_manager=Settings.callback_manager)
def _get_prompt_modules(self) -> PromptMixinType:
"""Get prompt sub-modules."""
return {}
def _get_prompts(self) -> Dict[str, Any]:
"""Get prompts."""
return {
"pandas_prompt": self._pandas_prompt,
"response_synthesis_prompt": self._response_synthesis_prompt,
}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
if "pandas_prompt" in prompts:
self._pandas_prompt = prompts["pandas_prompt"]
if "response_synthesis_prompt" in prompts:
self._response_synthesis_prompt = prompts["response_synthesis_prompt"]
@classmethod
def from_index(cls, index: PandasIndex, **kwargs: Any) -> "PandasQueryEngine":
logger.warning(
"PandasIndex is deprecated. "
"Directly construct PandasQueryEngine with df instead."
)
return cls(df=index.df, **kwargs)
def _get_table_context(self) -> str:
"""Get table context."""
return str(self._df.head(self._head))
def _query(self, query_bundle: QueryBundle) -> Response:
"""Answer a query."""
context = self._get_table_context()
pandas_response_str = self._llm.predict(
self._pandas_prompt,
df_str=context,
query_str=query_bundle.query_str,
instruction_str=self._instruction_str,
)
if self._verbose:
print_text(f"> Pandas Instructions:\n```\n{pandas_response_str}\n```\n")
pandas_output = self._instruction_parser.parse(pandas_response_str)
if self._verbose:
print_text(f"> Pandas Output: {pandas_output}\n")
response_metadata = {
"pandas_instruction_str": pandas_response_str,
"raw_pandas_output": pandas_output,
}
if self._synthesize_response:
response_str = str(
self._llm.predict(
self._response_synthesis_prompt,
query_str=query_bundle.query_str,
pandas_instructions=pandas_response_str,
pandas_output=pandas_output,
)
)
else:
response_str = str(pandas_output)
return Response(response=response_str, metadata=response_metadata)
async def _aquery(self, query_bundle: QueryBundle) -> Response:
return self._query(query_bundle)
|