基类: BaseReader
AssemblyAI音频转录的阅读器。
它使用AssemblyAI API来转录音频文件,并根据指定的格式将转录文本加载到一个或多个文档中。
要使用该功能,您需要安装assemblyai Python包,并设置环境变量ASSEMBLYAI_API_KEY为您的API密钥。
或者,API密钥也可以作为参数传递。
音频文件可以通过URL或本地文件路径指定。
Source code in llama-index-integrations/readers/llama-index-readers-assemblyai/llama_index/readers/assemblyai/base.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102 | class AssemblyAIAudioTranscriptReader(BaseReader):
"""
Reader for AssemblyAI audio transcripts.
It uses the AssemblyAI API to transcribe audio files
and loads the transcribed text into one or more Documents,
depending on the specified format.
To use, you should have the ``assemblyai`` python package installed, and the
environment variable ``ASSEMBLYAI_API_KEY`` set with your API key.
Alternatively, the API key can also be passed as an argument.
Audio files can be specified via an URL or a local file path.
"""
def __init__(
self,
file_path: str,
*,
transcript_format: TranscriptFormat = TranscriptFormat.TEXT,
config: Optional[assemblyai.TranscriptionConfig] = None,
api_key: Optional[str] = None,
):
"""
Initializes the AssemblyAI AudioTranscriptReader.
Args:
file_path: An URL or a local file path.
transcript_format: Transcript format to use.
See class ``TranscriptFormat`` for more info.
config: Transcription options and features. If ``None`` is given,
the Transcriber's default configuration will be used.
api_key: AssemblyAI API key.
"""
if api_key is not None:
assemblyai.settings.api_key = api_key
self.file_path = file_path
self.transcript_format = transcript_format
# Instantiating the Transcriber will raise a ValueError if no API key is set.
self.transcriber = assemblyai.Transcriber(config=config)
def load_data(self) -> List[Document]:
"""
Transcribes the audio file and loads the transcript into documents.
It uses the AssemblyAI API to transcribe the audio file and blocks until
the transcription is finished.
"""
transcript = self.transcriber.transcribe(self.file_path)
if transcript.error:
raise ValueError(f"Could not transcribe file: {transcript.error}")
if self.transcript_format == TranscriptFormat.TEXT:
return [Document(text=transcript.text, metadata=transcript.json_response)]
elif self.transcript_format == TranscriptFormat.SENTENCES:
sentences = transcript.get_sentences()
return [
Document(text=s.text, metadata=s.dict(exclude={"text"}))
for s in sentences
]
elif self.transcript_format == TranscriptFormat.PARAGRAPHS:
paragraphs = transcript.get_paragraphs()
return [
Document(text=p.text, metadata=p.dict(exclude={"text"}))
for p in paragraphs
]
elif self.transcript_format == TranscriptFormat.SUBTITLES_SRT:
return [Document(text=transcript.export_subtitles_srt())]
elif self.transcript_format == TranscriptFormat.SUBTITLES_VTT:
return [Document(text=transcript.export_subtitles_vtt())]
else:
raise ValueError("Unknown transcript format.")
|
加载数据
将音频文件转录并将文本内容加载到文档中。
它使用AssemblyAI API来转录音频文件,并会阻塞直到转录完成。
Source code in llama-index-integrations/readers/llama-index-readers-assemblyai/llama_index/readers/assemblyai/base.py
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102 | def load_data(self) -> List[Document]:
"""
Transcribes the audio file and loads the transcript into documents.
It uses the AssemblyAI API to transcribe the audio file and blocks until
the transcription is finished.
"""
transcript = self.transcriber.transcribe(self.file_path)
if transcript.error:
raise ValueError(f"Could not transcribe file: {transcript.error}")
if self.transcript_format == TranscriptFormat.TEXT:
return [Document(text=transcript.text, metadata=transcript.json_response)]
elif self.transcript_format == TranscriptFormat.SENTENCES:
sentences = transcript.get_sentences()
return [
Document(text=s.text, metadata=s.dict(exclude={"text"}))
for s in sentences
]
elif self.transcript_format == TranscriptFormat.PARAGRAPHS:
paragraphs = transcript.get_paragraphs()
return [
Document(text=p.text, metadata=p.dict(exclude={"text"}))
for p in paragraphs
]
elif self.transcript_format == TranscriptFormat.SUBTITLES_SRT:
return [Document(text=transcript.export_subtitles_srt())]
elif self.transcript_format == TranscriptFormat.SUBTITLES_VTT:
return [Document(text=transcript.export_subtitles_vtt())]
else:
raise ValueError("Unknown transcript format.")
|