12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136 | class OpenAPIToolSpec(BaseToolSpec):
"""
OpenAPI Tool.
This tool can be used to parse an OpenAPI spec for endpoints and operations
Use the RequestsToolSpec to automate requests to the openapi server
"""
spec_functions = ["load_openapi_spec"]
def __init__(
self,
spec: Optional[dict] = None,
url: Optional[str] = None,
operation_id_filter: Callable[[str], bool] = None,
):
import yaml
if spec and url:
raise ValueError("Only provide one of OpenAPI dict or url")
elif spec:
pass
elif url:
response = requests.get(url).text
spec = yaml.safe_load(response)
else:
raise ValueError("You must provide a url or OpenAPI spec as a dict")
# TODO: if we retrieved spec from URL, the server URL inside the spec may be relative to
# the retrieval URL.
parsed_spec = self.process_api_spec(spec, operation_id_filter)
self.spec = Document(text=json.dumps(parsed_spec))
def load_openapi_spec(self) -> List[Document]:
"""
You are an AI agent specifically designed to retrieve information by making web requests to
an API based on an OpenAPI specification.
Here's a step-by-step guide to assist you in answering questions:
1. Determine the server base URL required for making the request
2. Identify the relevant endpoint (a HTTP verb plus path template) necessary to address the
question
3. Generate the required parameters and/or request body for making the request to the
endpoint
4. Perform the necessary requests to obtain the answer
Returns:
Document: A List of Document objects that describes the available API.
"""
return [self.spec]
def process_api_spec(
self, spec: dict, operation_id_filter: Callable[[str], bool]
) -> dict:
"""
Perform simplification and reduction on an OpenAPI specification.
The goal is to create a more concise and efficient representation
for retrieval purposes.
"""
def reduce_details(details: dict) -> dict:
reduced = OrderedDict()
if details.get("description"):
reduced["description"] = details.get("description")
elif details.get("summary"):
reduced["description"] = details.get("summary")
if details.get("parameters"):
reduced["parameters"] = details.get("parameters", [])
if details.get("requestBody"):
reduced["requestBody"] = details.get("requestBody")
if "200" in details["responses"]:
reduced["responses"] = details["responses"]["200"]
return reduced
def dereference_openapi(openapi_doc):
"""Dereferences a Swagger/OpenAPI document by resolving all $ref pointers."""
try:
import jsonschema
except ImportError:
raise ImportError(
"The jsonschema library is required to parse OpenAPI documents. "
"Please install it with `pip install jsonschema`."
)
resolver = jsonschema.RefResolver.from_schema(openapi_doc)
def _dereference(obj):
if isinstance(obj, dict):
if "$ref" in obj:
with resolver.resolving(obj["$ref"]) as resolved:
return _dereference(resolved)
return {k: _dereference(v) for k, v in obj.items()}
elif isinstance(obj, list):
return [_dereference(item) for item in obj]
else:
return obj
return _dereference(openapi_doc)
spec = dereference_openapi(spec)
endpoints = []
for path_template, operations in spec["paths"].items():
for operation, operation_detail in operations.items():
operation_id = operation_detail.get("operationId")
if operation_id_filter is None or operation_id_filter(operation_id):
if operation in ["get", "post", "patch", "put", "delete"]:
# preserve order so the LLM "reads" the description first before all the
# schema details
details = OrderedDict()
details["verb"] = operation.upper()
details["path_template"] = path_template
details.update(reduce_details(operation_detail))
endpoints.append(details)
return {
"servers": spec["servers"],
"description": spec["info"].get("description"),
"endpoints": endpoints,
}
|