torch.distributions.dirichlet 的源代码
import torch
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
__all__ = ["Dirichlet"]
# 此辅助函数用于测试。
def _Dirichlet_backward(x, concentration, grad_output):
total = concentration.sum(-1, True).expand_as(concentration)
grad = torch._dirichlet_grad(x, concentration, total)
return grad * (grad_output - (x * grad_output).sum(-1, True))
class _Dirichlet(Function):
@staticmethod
def forward(ctx, concentration):
x = torch._sample_dirichlet(concentration)
ctx.save_for_backward(x, concentration)
return x
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
x, concentration = ctx.saved_tensors
return _Dirichlet_backward(x, concentration, grad_output)
[docs]class Dirichlet(ExponentialFamily):
r"""
创建一个由浓度参数 :attr:`concentration` 参数化的 Dirichlet 分布。
示例::
>>> # xdoctest: +IGNORE_WANT("非确定性")
>>> m = Dirichlet(torch.tensor([0.5, 0.5]))
>>> m.sample() # 浓度为 [0.5, 0.5] 的 Dirichlet 分布
tensor([ 0.1046, 0.8954])
参数:
concentration (Tensor): 分布的浓度参数
(通常称为 alpha)
"""
arg_constraints = {
"concentration": constraints.independent(constraints.positive, 1)
}
support = constraints.simplex
has_rsample = True
def __init__(self, concentration, validate_args=None):
if concentration.dim() < 1:
raise ValueError(
"`concentration` 参数必须至少为一维。"
)
self.concentration = concentration
batch_shape, event_shape = concentration.shape[:-1], concentration.shape[-1:]
super().__init__(batch_shape, event_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Dirichlet, _instance)
batch_shape = torch.Size(batch_shape)
new.concentration = self.concentration.expand(batch_shape + self.event_shape)
super(Dirichlet, new).__init__(
batch_shape, self.event_shape, validate_args=False
)
new._validate_args = self._validate_args
return new
[docs] def rsample(self, sample_shape=()):
shape = self._extended_shape(sample_shape)
concentration = self.concentration.expand(shape)
return _Dirichlet.apply(concentration)
[docs] def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return (
torch.xlogy(self.concentration - 1.0, value).sum(-1)
+ torch.lgamma(self.concentration.sum(-1))
- torch.lgamma(</