Shortcuts

torch.distributions.gamma 的源代码

from numbers import Number

import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all

__all__ = ["Gamma"]


def _standard_gamma(concentration):
    return torch._standard_gamma(concentration)


[docs]class Gamma(ExponentialFamily): r""" 创建一个由形状参数 :attr:`concentration` 和 :attr:`rate` 参数化的 Gamma 分布。 示例:: >>> # xdoctest: +IGNORE_WANT("非确定性") >>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # 浓度=1 和 速率=1 的 Gamma 分布 tensor([ 0.1046]) 参数: concentration (float 或 Tensor): 分布的形状参数 (通常称为 alpha) rate (float 或 Tensor): 速率 = 1 / 分布的尺度 (通常称为 beta) """ arg_constraints = { "concentration": constraints.positive, "rate": constraints.positive, } support = constraints.nonnegative has_rsample = True _mean_carrier_measure = 0 @property def mean(self): return self.concentration / self.rate @property def mode(self): return ((self.concentration - 1) / self.rate).clamp(min=0) @property def variance(self): return self.concentration / self.rate.pow(2) def __init__(self, concentration, rate, validate_args=None): self.concentration, self.rate = broadcast_all(concentration, rate) if isinstance(concentration, Number) and isinstance(rate, Number): batch_shape = torch.Size() else: batch_shape = self.concentration.size() super().__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Gamma, _instance) batch_shape = torch.Size(batch_shape) new.concentration = self.concentration.expand(batch_shape) new.rate = self.rate.expand(batch_shape) super(Gamma, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
[docs] def rsample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) value = _standard_gamma(self.concentration.expand(shape)) / self.rate.expand( shape ) value.detach().clamp_( min=torch.finfo(value.dtype).tiny ) # 不要在 autograd 图中记录 return value
[docs] def log_prob(self, value): value = torch.as_tensor(value, dtype=self.rate.dtype, device=self.rate.device) if self._validate_args: self._validate_sample(value) return ( torch.xlogy(self.concentration, self.rate) + <
优云智算