Shortcuts

torch.distributions.half_normal 的源代码

import math

import torch
from torch import inf
from torch.distributions import constraints
from torch.distributions.normal import Normal
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AbsTransform

__all__ = ["HalfNormal"]


[docs]class HalfNormal(TransformedDistribution): r""" 创建一个由 `scale` 参数化的半正态分布,其中:: X ~ Normal(0, scale) Y = |X| ~ HalfNormal(scale) 示例:: >>> # xdoctest: +IGNORE_WANT("非确定性") >>> m = HalfNormal(torch.tensor([1.0])) >>> m.sample() # 半正态分布,scale=1 tensor([ 0.1046]) 参数: scale (float 或 Tensor): 完整正态分布的尺度 """ arg_constraints = {"scale": constraints.positive} support = constraints.nonnegative has_rsample = True def __init__(self, scale, validate_args=None): base_dist = Normal(0, scale, validate_args=False) super().__init__(base_dist, AbsTransform(), validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(HalfNormal, _instance) return super().expand(batch_shape, _instance=new)
@property def scale(self): return self.base_dist.scale @property def mean(self): return self.scale * math.sqrt(2 / math.pi) @property def mode(self): return torch.zeros_like(self.scale) @property def variance(self): return self.scale.pow(2) * (1 - 2 / math.pi)
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) log_prob = self.base_dist.log_prob(value) + math.log(2) log_prob = torch.where(value >= 0, log_prob, -inf) return log_prob
[docs] def cdf(self, value): if self._validate_args: self._validate_sample(value) return 2 * self.base_dist.cdf(value) - 1
[docs] def icdf(self, prob): return self.base_dist.icdf((prob + 1) / 2)
[docs] def entropy(self): return self.base_dist.entropy() - math.log(2)
优云智算