Shortcuts

torch.distributions.kumaraswamy 的源代码

```html
import torch
from torch import nan
from torch.distributions import constraints
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AffineTransform, PowerTransform
from torch.distributions.uniform import Uniform
from torch.distributions.utils import broadcast_all, euler_constant

__all__ = ["Kumaraswamy"]


def _moments(a, b, n):
    """
    使用torch.lgamma计算Kumaraswamy的第n个矩
    """
    arg1 = 1 + n / a
    log_value = torch.lgamma(arg1) + torch.lgamma(b) - torch.lgamma(arg1 + b)
    return b * torch.exp(log_value)


[docs]class Kumaraswamy(TransformedDistribution): r""" 从Kumaraswamy分布中采样。 示例:: >>> # xdoctest: +IGNORE_WANT("非确定性") >>> m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # 从浓度alpha=1和beta=1的Kumaraswamy分布中采样 tensor([ 0.1729]) 参数: concentration1 (float或Tensor): 分布的第一个浓度参数 (通常称为alpha) concentration0 (float或Tensor): 分布的第二个浓度参数 (通常称为beta) """ arg_constraints = { "concentration1": constraints.positive, "concentration0": constraints.positive, } support = constraints.unit_interval has_rsample = True def __init__(self, concentration1, concentration0, validate_args=None): self.concentration1, self.concentration0 = broadcast_all( concentration1, concentration0 ) finfo = torch.finfo(self.concentration0.dtype) base_dist = Uniform( torch.full_like(self.concentration0, 0), torch.full_like(self.concentration0, 1), validate_args=validate_args, ) transforms = [ PowerTransform(exponent=self.concentration0.reciprocal()), AffineTransform(loc=1.0, scale=-1.0), PowerTransform(exponent=self.concentration1.reciprocal()), ] super().__init__(base_dist, transforms, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Kumaraswamy, _instance) new.concentration1 = self.concentration1.expand(batch_shape) new.concentration0 = self.concentration0.expand(batch_shape) return super().expand(batch_shape, _instance=new)
@property def mean(self): return _moments(self.concentration1, self.concentration0, 1) @property def mode(self): # 在log空间中计算以提高数值稳定性。 log_mode = ( self.concentration0.reciprocal() * (-self.concentration0).log1p() - (-self.concentration0 * self.concentration1).log1p() ) log_mode[(self.concentration0 < 1) | (self.concentration1 < 1)] = nan return log_mode.exp() @property def variance(self): return _moments(self.concentration1, self.concentration0, <span class="
优云智算