Shortcuts

torch.distributions.log_normal 的源代码

from torch.distributions import constraints
from torch.distributions.normal import Normal
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import ExpTransform

__all__ = ["LogNormal"]


[docs]class LogNormal(TransformedDistribution): r""" 创建一个由 :attr:`loc` 和 :attr:`scale` 参数化的对数正态分布,其中:: X ~ 正态分布(loc, scale) Y = exp(X) ~ 对数正态分布(loc, scale) 示例:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # 对数正态分布,均值=0,标准差=1 tensor([ 0.1046]) 参数: loc (float 或 Tensor): 分布对数的均值 scale (float 或 Tensor): 分布对数的标准差 """ arg_constraints = {"loc": constraints.real, "scale": constraints.positive} support = constraints.positive has_rsample = True def __init__(self, loc, scale, validate_args=None): base_dist = Normal(loc, scale, validate_args=validate_args) super().__init__(base_dist, ExpTransform(), validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(LogNormal, _instance) return super().expand(batch_shape, _instance=new)
@property def loc(self): return self.base_dist.loc @property def scale(self): return self.base_dist.scale @property def mean(self): return (self.loc + self.scale.pow(2) / 2).exp() @property def mode(self): return (self.loc - self.scale.square()).exp() @property def variance(self): scale_sq = self.scale.pow(2) return scale_sq.expm1() * (2 * self.loc + scale_sq).exp()
[docs] def entropy(self): return self.base_dist.entropy() + self.loc
优云智算