torch.distributions.uniform 的源代码
from numbers import Number
import torch
from torch import nan
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all
__all__ = ["Uniform"]
[docs]class Uniform(Distribution):
r"""
从半开区间 ``[low, high)`` 生成均匀分布的随机样本。
示例::
>>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0]))
>>> m.sample() # 在范围 [0.0, 5.0) 内均匀分布
>>> # xdoctest: +SKIP
tensor([ 2.3418])
参数:
low (float 或 Tensor): 下界(包含)。
high (float 或 Tensor): 上界(不包含)。
"""
# TODO 允许 (loc,scale) 参数化以允许独立的约束。
arg_constraints = {
"low": constraints.dependent(is_discrete=False, event_dim=0),
"high": constraints.dependent(is_discrete=False, event_dim=0),
}
has_rsample = True
@property
def mean(self):
return (self.high + self.low) / 2
@property
def mode(self):
return nan * self.high
@property
def stddev(self):
return (self.high - self.low) / 12**0.5
@property
def variance(self):
return (self.high - self.low).pow(2) / 12
def __init__(self, low, high, validate_args=None):
self.low, self.high = broadcast_all(low, high)
if isinstance(low, Number) and isinstance(high, Number):
batch_shape = torch.Size()
else:
batch_shape = self.low.size()
super().__init__(batch_shape, validate_args=validate_args)
if self._validate_args and not torch.lt(self.low, self.high).all():
raise ValueError("Uniform 在 low>= high 时未定义")
[docs] def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Uniform, _instance)
batch_shape = torch.Size(batch_shape)
new.low = self.low.expand(batch_shape)
new.high = self.high.expand(batch_shape)
super(Uniform, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
@constraints.dependent_property(is_discrete=False, event_dim=0)
def support(self):
return constraints.interval(self.low, self.high)
[docs] def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
rand = torch.rand(shape, dtype=self.low.dtype, device=self.low.device)
return self.low + rand * (self.high - self.low<span class