torch.fake_quantize_per_channel_affine¶
- torch.fake_quantize_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max) 张量¶
返回一个新的张量,使用
scale、zero_point、quant_min和quant_max对input中的数据进行逐通道的伪量化,通道由axis指定。- Parameters
- Returns
一个新的按通道伪量化
torch.float32张量- Return type
示例:
>>> x = torch.randn(2, 2, 2) >>> x tensor([[[-0.2525, -0.0466], [ 0.3491, -0.2168]], [[-0.5906, 1.6258], [ 0.6444, -0.0542]]]) >>> scales = (torch.randn(2) + 1) * 0.05 >>> scales tensor([0.0475, 0.0486]) >>> zero_points = torch.zeros(2).to(torch.int32) >>> zero_points tensor([0, 0]) >>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255) tensor([[[0.0000, 0.0000], [0.3405, 0.0000]], [[0.0000, 1.6134], [0.6323, 0.0000]]])