Shortcuts

MSELoss

class torch.nn.MSELoss(size_average=None, reduce=None, reduction='mean')[源代码]

创建一个标准,用于衡量输入 xx 和目标 yy 中每个元素之间的均方误差(平方 L2 范数)。

未减少的(即 reduction 设置为 'none')损失可以描述为:

(x,y)=L={l1,,lN},ln=(xnyn)2,\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = \left( x_n - y_n \right)^2,

其中 NN 是批次大小。如果 reduction 不是 'none' (默认 'mean'),则:

(x,y)={mean(L),if reduction=‘mean’;sum(L),if reduction=‘sum’.\ell(x, y) = \begin{cases} \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{`sum'.} \end{cases}

xxyy 是具有任意形状的张量,每个张量共有 nn 个元素。

均值操作仍然对所有元素进行操作,并除以nn

如果将 reduction = 'sum',则可以避免除以 nn

Parameters
  • size_average (布尔值, 可选) – 已弃用(参见 reduction)。默认情况下, 损失在批次中的每个损失元素上进行平均。请注意,对于某些损失,每个样本有多个元素。如果字段 size_average 设置为 False,则损失改为对每个小批次进行求和。当 reduceFalse 时忽略。默认值:True

  • reduce (bool, 可选) – 已弃用(参见 reduction)。默认情况下,损失会根据 size_average 的设置在每个小批次中对观测值进行平均或求和。当 reduceFalse 时,返回每个批次元素的损失,并忽略 size_average。默认值:True

  • reduction (str, 可选) – 指定应用于输出的reduction方式: 'none' | 'mean' | 'sum''none':不进行reduction, 'mean':输出的总和将除以输出中的元素数量,'sum':输出将被求和。注意:size_averagereduce 正在被弃用,在此期间, 指定这两个参数中的任何一个都将覆盖 reduction。默认值:'mean'

Shape:
  • 输入:()(*),其中 * 表示任意数量的维度。

  • 目标: ()(*), 与输入形状相同。

示例:

>>> loss = nn.MSELoss()
>>> input = torch.randn(3, 5, requires_grad=True)
>>> target = torch.randn(3, 5)
>>> output = loss(input, target)
>>> output.backward()
优云智算