Shortcuts

AdamW

class torch.optim.AdamW(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0.01, amsgrad=False, *, maximize=False, foreach=None, capturable=False, differentiable=False, fused=None)[源代码]

实现 AdamW 算法。

input:γ(lr),β1,β2(betas),θ0(params),f(θ)(objective),ϵ (epsilon)λ(weight decay),amsgrad,maximizeinitialize:m00 (first moment),v00 ( second moment),v0^max0fort=1todoifmaximize:gtθft(θt1)elsegtθft(θt1)θtθt1γλθt1mtβ1mt1+(1β1)gtvtβ2vt1+(1β2)gt2mt^mt/(1β1t)vt^vt/(1β2t)ifamsgradvt^maxmax(vt^max,vt^)θtθtγmt^/(vt^max+ϵ)elseθtθtγmt^/(vt^+ϵ)returnθt\begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{(lr)}, \: \beta_1, \beta_2 \text{(betas)}, \: \theta_0 \text{(params)}, \: f(\theta) \text{(objective)}, \: \epsilon \text{ (epsilon)} \\ &\hspace{13mm} \lambda \text{(weight decay)}, \: \textit{amsgrad}, \: \textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ (first moment)}, v_0 \leftarrow 0 \text{ ( second moment)}, \: \widehat{v_0}^{max}\leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\textbf{if} \: amsgrad \\ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max}, \widehat{v_t}) \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned}

有关该算法的更多详细信息,请参阅 Decoupled Weight Decay Regularization

Parameters
  • 参数 (可迭代对象) – 要优化的参数的可迭代对象或定义参数组的字典

  • lr (float, Tensor, 可选) – 学习率(默认值:1e-3)。对于所有实现,张量LR尚未支持。如果您没有同时指定fused=True或capturable=True,请使用浮点LR。

  • betas (元组[float, float], 可选) – 用于计算梯度和其平方的运行平均值的系数(默认值:(0.9, 0.999))

  • eps (float, 可选) – 添加到分母中的项,以提高数值稳定性(默认值:1e-8)

  • weight_decay (浮点数, 可选) – 权重衰减系数 (默认值: 1e-2)

  • amsgrad (布尔值, 可选) – 是否使用论文 On the Convergence of Adam and Beyond 中的 AMSGrad 变体 (默认: False)

  • 最大化 (bool, 可选) – 相对于参数最大化目标,而不是最小化(默认值:False)

  • foreach (bool, 可选) – 是否使用优化器的foreach实现。如果用户未指定(即foreach为None),我们将尝试在CUDA上使用foreach而不是for循环实现,因为通常它的性能显著更高。请注意,由于中间结果是一个张量列表而不是单个张量,foreach实现使用的峰值内存比for循环版本多~ sizeof(params)。如果内存受限,请一次通过优化器批量处理较少的参数,或将此标志切换为False(默认值:None)

  • 可捕获 (布尔值, 可选) – 此实例是否安全地在CUDA图中捕获。传递True可能会影响未图捕获的性能,因此如果您不打算图捕获此实例,请将其保留为False(默认值:False)

  • 可微分 (bool, 可选) – 是否在训练中通过优化器步骤进行自动梯度计算。否则,step() 函数将在 torch.no_grad() 上下文中运行。设置为 True 可能会影响性能,因此如果不打算通过此实例运行自动梯度计算,请保持为 False(默认值:False)

  • 融合 (布尔值, 可选) – 是否使用融合实现(仅限CUDA)。 目前,torch.float64torch.float32torch.float16torch.bfloat16 支持。(默认值:无)

注意

foreach 和 fused 实现通常比 for 循环、单张量实现更快。因此,如果用户没有指定 BOTH 标志(即当 foreach = fused = None 时),我们将在张量全部位于 CUDA 上时尝试默认使用 foreach 实现。例如,如果用户为 fused 指定 True 但未为 foreach 指定任何内容,我们将运行 fused 实现。如果用户为 foreach 指定 False 但未为 fused 指定任何内容(或为 fused 指定 False 但未为 foreach 指定任何内容),我们将运行 for 循环实现。如果用户为 foreach 和 fused 都指定 True,我们将优先选择 fused 而不是 foreach,因为它通常更快。我们尝试使用最快的实现,因此优先级顺序为 fused -> foreach -> for 循环。然而,由于 fused 实现相对较新,我们希望给它足够的时间进行充分测试,因此当用户未指定任一标志时,我们默认使用 foreach 而不是 fused。

add_param_group(param_group)

Optimizerparam_groups 添加一个参数组。

这在微调预训练网络时非常有用,因为冻结的层可以变为可训练的,并随着训练的进行添加到优化器中。

Parameters

param_group (字典) – 指定应与组特定优化选项一起优化的张量。

load_state_dict(state_dict)

加载优化器状态。

Parameters

state_dict (字典) – 优化器状态。应该是调用 state_dict() 返回的对象。

register_load_state_dict_post_hook(hook, prepend=False)

注册一个在调用load_state_dict()之后将被调用的加载状态字典后钩子。它应具有以下签名:

hook(optimizer) -> None

参数 optimizer 是正在使用的优化器实例。

钩子将在调用 self 上的 load_state_dict 之后,使用参数 self 被调用。注册的钩子可以用于在 load_state_dict 加载了 state_dict 之后执行后处理。

Parameters
  • 钩子 (可调用对象) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为True,提供的post hook将在所有已注册的post-hooks之前触发load_state_dict。否则,提供的hook将在所有已注册的post-hooks之后触发。(默认值: False)

Returns

一个可以用于通过调用handle.remove()来移除添加的钩子的句柄

Return type

torch.utils.hooks.RemoveableHandle

register_load_state_dict_pre_hook(hook, prepend=False)

注册一个在调用load_state_dict()之前会被调用的预钩子。它应该具有以下签名:

hook(optimizer, state_dict) -> state_dict  None

参数 optimizer 是正在使用的优化器实例,而参数 state_dict 是用户传入的 state_dict 的浅拷贝。钩子可以就地修改 state_dict,或者选择返回一个新的 state_dict。如果返回了 state_dict,它将被用于加载到优化器中。

钩子将在调用 load_state_dict 之前,使用参数 selfstate_dict 进行调用。注册的钩子可以用于在调用 load_state_dict 之前执行预处理。

Parameters
  • 钩子 (可调用对象) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为True,提供的预hook将在所有已注册的预钩子之前触发。否则,提供的hook将在所有已注册的预钩子之后触发。(默认值: False)

Returns

一个可以用于通过调用handle.remove()来移除添加的钩子的句柄

Return type

torch.utils.hooks.RemoveableHandle

register_state_dict_post_hook(hook, prepend=False)

注册一个状态字典的后处理钩子,该钩子将在调用 state_dict() 之后被调用。它应具有以下签名:

hook(optimizer, state_dict) -> state_dict  None

钩子将在生成 state_dict 后,使用参数 selfstate_dict 被调用。钩子可以就地修改 state_dict,或者选择性地返回一个新的 state_dict。注册的钩子可以用于在返回 state_dict 之前对其进行后处理。

Parameters
  • 钩子 (可调用对象) – 要注册的用户定义钩子。

  • 前置 (布尔值) – 如果为True,提供的钩子将在所有已注册的状态字典后置钩子之前触发。否则,提供的钩子将在所有已注册的后置钩子之后触发。(默认值: False)

Returns

一个可以用于通过调用handle.remove()来移除添加的钩子的句柄

Return type

torch.utils.hooks.RemoveableHandle

register_state_dict_pre_hook(hook, prepend=False)

注册一个状态字典预钩子,该钩子将在调用 state_dict() 之前被调用。它应具有以下签名:

hook(optimizer) -> None

参数 optimizer 是正在使用的优化器实例。 钩子将在调用 self 上的 state_dict 之前,以参数 self 被调用。 注册的钩子可以在调用 state_dict 之前执行预处理。

Parameters
  • 钩子 (可调用对象) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为True,提供的预hook将在所有已注册的预钩子之前触发。否则,提供的hook将在所有已注册的预钩子之后触发。(默认值: False)

Returns

一个可以用于通过调用handle.remove()来移除添加的钩子的句柄

Return type

torch.utils.hooks.RemoveableHandle

register_step_post_hook(hook)

注册一个优化器步骤后钩子,该钩子将在优化器步骤之后被调用。 它应具有以下签名:

hook(optimizer, args, kwargs) -> None

参数 optimizer 是正在使用的优化器实例。

Parameters

钩子 (可调用对象) – 要注册的用户定义钩子。

Returns

一个可以用于通过调用handle.remove()来移除添加的钩子的句柄

Return type

torch.utils.hooks.RemovableHandle

register_step_pre_hook(hook)

注册一个优化器步骤预钩子,它将在优化器步骤之前被调用。它应具有以下签名:

hook(optimizer, args, kwargs) -> None or modified args and kwargs

参数 optimizer 是正在使用的优化器实例。如果在预钩子中修改了 args 和 kwargs,则返回包含 new_args 和 new_kwargs 的元组。

Parameters

钩子 (可调用对象) – 要注册的用户定义钩子。

Returns

一个可以用于通过调用handle.remove()来移除添加的钩子的句柄

Return type

torch.utils.hooks.RemovableHandle

state_dict()

返回优化器的状态为一个dict

它包含两个条目:

  • state: a Dict holding current optimization state. Its content

    在不同的优化器类之间有所不同,但一些共同的特点仍然存在。例如,状态是按参数保存的,而参数本身并不保存。state 是一个字典,将参数ID映射到包含每个参数对应状态的字典。

  • param_groups: a List containing all parameter groups where each

    参数组是一个字典。每个参数组包含特定于优化器的元数据,例如学习率和权重衰减,以及该组中参数的参数ID列表。

注意:参数ID可能看起来像索引,但它们只是与param_group关联的状态ID。当从state_dict加载时,优化器会将param_group params(整数ID)和优化器param_groups(实际的nn.Parameter)按顺序压缩,以匹配状态,而无需额外的验证。

返回的状态字典可能看起来像这样:

{
    'state': {
        0: {'momentum_buffer': tensor(...), ...},
        1: {'momentum_buffer': tensor(...), ...},
        2: {'momentum_buffer': tensor(...), ...},
        3: {'momentum_buffer': tensor(...), ...}
    },
    'param_groups': [
        {
            'lr': 0.01,
            'weight_decay': 0,
            ...
            'params': [0]
        },
        {
            'lr': 0.001,
            'weight_decay': 0.5,
            ...
            'params': [1, 2, 3]
        }
    ]
}
Return type

字典[字符串, 任意]

step(closure=None)[源代码]

执行单个优化步骤。

Parameters

闭包 (可调用对象, 可选) – 一个重新评估模型并返回损失的闭包。

zero_grad(set_to_none=True)

重置所有优化的 torch.Tensor 的梯度。

Parameters

set_to_none (布尔值) – 不是设置为零,而是将梯度设置为None。 这通常会减少内存占用,并且可以适度提高性能。 然而,这会改变某些行为。例如: 1. 当用户尝试访问梯度并对其执行手动操作时, None属性或充满0的张量将表现出不同的行为。 2. 如果用户请求 zero_grad(set_to_none=True) 然后进行反向传播,.grad 对于没有接收到梯度的参数,保证为None。 3. torch.optim 优化器在梯度为0或None时有不同的行为 (在一种情况下,它使用梯度为0进行步骤,而在另一种情况下,它完全跳过步骤)。

优云智算