Shortcuts

torch.signal.windows.bartlett

torch.signal.windows.bartlett(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[源代码]

计算巴特利特窗。

Bartlett窗口定义如下:

wn=12nM11={2nM1if 0nM1222nM1if M12<n<Mw_n = 1 - \left| \frac{2n}{M - 1} - 1 \right| = \begin{cases} \frac{2n}{M - 1} & \text{if } 0 \leq n \leq \frac{M - 1}{2} \\ 2 - \frac{2n}{M - 1} & \text{if } \frac{M - 1}{2} < n < M \\ \end{cases}

窗口被归一化为1(最大值为1)。然而,如果M是偶数且symTrue,则1不会出现。

Parameters

M (int) – 窗口的长度。 换句话说,返回窗口的点的数量。

Keyword Arguments
  • sym (bool, 可选) – 如果为False,返回一个适合用于光谱分析的周期性窗口。如果为True,返回一个适合用于滤波器设计的对称窗口。默认值:True

  • dtype (torch.dtype, 可选) – 返回张量的所需数据类型。 默认值:如果 None,则使用全局默认值(参见 torch.set_default_dtype())。

  • 布局 (torch.layout, 可选) – 返回张量的所需布局。 默认值: torch.strided

  • 设备 (torch.device, 可选) – 返回张量所需的设备。 默认值:如果 None,则使用默认张量类型的当前设备 (参见 torch.set_default_device())。device 将是 CPU 用于 CPU 张量类型,以及当前 CUDA 设备用于 CUDA 张量类型。

  • requires_grad (布尔值, 可选) – 如果 autograd 应该记录对返回张量的操作。默认值:False

Return type

张量

示例:

>>> # 生成一个对称的Bartlett窗口。
>>> torch.signal.windows.bartlett(10)
tensor([0.0000, 0.2222, 0.4444, 0.6667, 0.8889, 0.8889, 0.6667, 0.4444, 0.2222, 0.0000])

>>> # 生成一个周期性的Bartlett窗口。
>>> torch.signal.windows.bartlett(10, sym=False)
tensor([0.0000, 0.2000, 0.4000, 0.6000, 0.8000, 1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
优云智算