• Tutorials >
  • (Beta) Implementing High-Performance Transformers with Scaled Dot Product Attention (SDPA)
Shortcuts

(测试版) 使用缩放点积注意力机制(SDPA)实现高性能Transformer

创建于:2023年3月15日 | 最后更新:2024年10月9日 | 最后验证:2024年11月5日

作者: Driss Guessous

总结

在本教程中,我们想强调一个新的torch.nn.functional函数,该函数可能对实现transformer架构有所帮助。该函数名为torch.nn.functional.scaled_dot_product_attention。有关该函数的详细描述,请参阅PyTorch文档。该函数已被整合到torch.nn.MultiheadAttentiontorch.nn.TransformerEncoderLayer中。

概述

在高层次上,这个PyTorch函数根据论文Attention is all you need中的定义计算查询、键和值之间的缩放点积注意力(SDPA)。虽然这个函数可以使用现有的PyTorch函数编写,但融合实现可以提供比简单实现更大的性能优势。

融合实现

对于CUDA张量输入,该函数将分派到以下实现之一:

注意

本教程需要 PyTorch 2.0.0 或更高版本。

import torch
import torch.nn as nn
import torch.nn.functional as F
device = "cuda" if torch.cuda.is_available() else "cpu"

# Example Usage:
query, key, value = torch.randn(2, 3, 8, device=device), torch.randn(2, 3, 8, device=device), torch.randn(2, 3, 8, device=device)
F.scaled_dot_product_attention(query, key, value)
tensor([[[-1.3321, -0.3489,  0.3015, -0.3912,  0.9867,  0.3137, -0.0691,
          -1.2593],
         [-1.0882,  0.2506,  0.6491,  0.1360,  0.5238, -0.2448, -0.0820,
          -0.6171],
         [-1.0012,  0.3990,  0.6441, -0.0277,  0.5325, -0.2564, -0.0607,
          -0.6404]],

        [[ 0.6091,  0.0708,  0.6188,  0.3252, -0.1598,  0.4197, -0.2335,
           0.0630],
         [ 0.5285,  0.3890, -0.2649,  0.3706, -0.3839,  0.1963, -0.6242,
           0.2312],
         [ 0.4048,  0.0762,  0.3777,  0.4689, -0.2978,  0.2754, -0.6429,
           0.1037]]], device='cuda:0')

显式调度器控制

虽然该函数会隐式地分派到三种实现之一,但用户也可以通过使用上下文管理器显式控制分派。此上下文管理器允许用户显式禁用某些实现。如果用户希望确保该函数确实针对其特定输入使用最快的实现,则可以使用上下文管理器来扫描测量性能。

# Lets define a helpful benchmarking function:
import torch.utils.benchmark as benchmark
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
    t0 = benchmark.Timer(
        stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
    )
    return t0.blocked_autorange().mean * 1e6

# Lets define the hyper-parameters of our input
batch_size = 32
max_sequence_len = 1024
num_heads = 32
embed_dimension = 32

dtype = torch.float16

query = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)
key = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)
value = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)

print(f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds")

# Lets explore the speed of each of the 3 implementations
from torch.nn.attention import SDPBackend, sdpa_kernel


with sdpa_kernel(SDPBackend.MATH):
    math_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
    print(f"The math implementation runs in {math_time:.3f} microseconds")

with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
    try:
        flash_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
        print(f"The flash attention implementation runs in {flash_time:.3f} microseconds")
    except RuntimeError:
        print("FlashAttention is not supported. See warnings for reasons.")

with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
    try:
        efficient_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
        print(f"The memory efficient implementation runs in {efficient_time:.3f} microseconds")
    except RuntimeError:
        print("EfficientAttention is not supported. See warnings for reasons.")
The default implementation runs in 2326.418 microseconds
The math implementation runs in 87382.506 microseconds
The flash attention implementation runs in 2328.379 microseconds
The memory efficient implementation runs in 4305.558 microseconds

硬件依赖性

根据您运行上述单元格的机器和可用的硬件,您的结果可能会有所不同。 - 如果您没有GPU并且在CPU上运行,那么使用FP32时上下文管理器将不会产生任何效果,所有三次运行应该返回相似的时间。 - 根据您的显卡支持的计算能力,flash attention或memory efficient可能已经失败。

因果自注意力

下面是一个受Andrej Karpathy NanoGPT仓库启发的多头因果自注意力块的示例实现。

class CausalSelfAttention(nn.Module):

    def __init__(self, num_heads: int, embed_dimension: int, bias: bool=False, is_causal: bool=False, dropout:float=0.0):
        super().__init__()
        assert embed_dimension % num_heads == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(embed_dimension, 3 * embed_dimension, bias=bias)
        # output projection
        self.c_proj = nn.Linear(embed_dimension, embed_dimension, bias=bias)
        # regularization
        self.dropout = dropout
        self.resid_dropout = nn.Dropout(dropout)
        self.num_heads = num_heads
        self.embed_dimension = embed_dimension
        # Perform causal masking
        self.is_causal = is_causal

    def forward(self, x):
        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        query_projected = self.c_attn(x)

        batch_size = query_projected.size(0)
        embed_dim = query_projected.size(2)
        head_dim = embed_dim // (self.num_heads * 3)

        query, key, value = query_projected.chunk(3, -1)
        query = query.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)

        if self.training:
            dropout = self.dropout
            is_causal = self.is_causal
        else:
            dropout = 0.0
            is_causal = False

        y = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=dropout, is_causal=is_causal)
        y = y.transpose(1, 2).view(batch_size, -1, self.num_heads * head_dim)

        y = self.resid_dropout(self.c_proj(y))
        return y


num_heads = 8
heads_per_dim = 64
embed_dimension = num_heads * heads_per_dim
dtype = torch.float16
model = CausalSelfAttention(num_heads=num_heads, embed_dimension=embed_dimension, bias=False, is_causal=True, dropout=0.1).to("cuda").to(dtype).eval()
print(model)
CausalSelfAttention(
  (c_attn): Linear(in_features=512, out_features=1536, bias=False)
  (c_proj): Linear(in_features=512, out_features=512, bias=False)
  (resid_dropout): Dropout(p=0.1, inplace=False)
)

NestedTensor 和密集张量支持

SDPA 支持 NestedTensor 和 Dense tensor 输入。NestedTensors 处理输入为一批可变长度序列的情况,而无需将每个序列填充到批次中的最大长度。有关 NestedTensors 的更多信息,请参阅 torch.nestedNestedTensors Tutorial

import random
def generate_rand_batch(
    batch_size,
    max_sequence_len,
    embed_dimension,
    pad_percentage=None,
    dtype=torch.float16,
    device="cuda",
):
    if not pad_percentage:
        return (
            torch.randn(
                batch_size,
                max_sequence_len,
                embed_dimension,
                dtype=dtype,
                device=device,
            ),
            None,
        )
    # Random sequence lengths
    seq_len_list = [
        int(max_sequence_len * (1 - random.gauss(pad_percentage, 0.01)))
        for _ in range(batch_size)
    ]
    # Make random entry in the batch have max sequence length
    seq_len_list[random.randint(0, batch_size - 1)] = max_sequence_len
    return (
        torch.nested.nested_tensor(
            [
                torch.randn(seq_len, embed_dimension,
                            dtype=dtype, device=device)
                for seq_len in seq_len_list
            ]
        ),
        seq_len_list,
    )

random_nt, _ = generate_rand_batch(32, 512, embed_dimension, pad_percentage=0.5, dtype=dtype, device=device)
random_dense, _ = generate_rand_batch(32, 512, embed_dimension, pad_percentage=None, dtype=dtype, device=device)

# Currently the fused implementations don't support ``NestedTensor`` for training
model.eval()

with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
    try:
        print(f"Random NT runs in {benchmark_torch_function_in_microseconds(model, random_nt):.3f} microseconds")
        print(f"Random Dense runs in {benchmark_torch_function_in_microseconds(model, random_dense):.3f} microseconds")
    except RuntimeError:
        print("FlashAttention is not supported. See warnings for reasons.")
/usr/local/lib/python3.10/dist-packages/torch/nested/__init__.py:226: UserWarning:

The PyTorch API of nested tensors is in prototype stage and will change in the near future. (Triggered internally at ../aten/src/ATen/NestedTensorImpl.cpp:178.)

Random NT runs in 561.846 microseconds
Random Dense runs in 948.365 microseconds

使用SDPA与torch.compile

随着PyTorch 2.0的发布,引入了一个名为torch.compile()的新功能,它可以提供比eager模式显著的性能提升。缩放点积注意力与torch.compile()完全兼容。为了展示这一点,让我们使用torch.compile()编译CausalSelfAttention模块,并观察由此带来的性能提升。

batch_size = 32
max_sequence_len = 256
x = torch.rand(batch_size, max_sequence_len,
               embed_dimension, device=device, dtype=dtype)
print(
    f"The non compiled module runs in  {benchmark_torch_function_in_microseconds(model, x):.3f} microseconds")


compiled_model = torch.compile(model)
# Let's compile it
compiled_model(x)
print(
    f"The compiled module runs in  {benchmark_torch_function_in_microseconds(compiled_model, x):.3f} microseconds")
The non compiled module runs in  415.514 microseconds
The compiled module runs in  513.798 microseconds

确切的执行时间取决于机器,然而我的结果如下: 未编译的模块运行时间为 166.616 微秒 编译后的模块运行时间为 166.726 微秒 这并不是我们所期望的。让我们深入挖掘一下。 PyTorch 带有一个令人惊叹的内置分析器,您可以使用它来 检查代码的性能特征。

from torch.profiler import profile, record_function, ProfilerActivity
activities = [ProfilerActivity.CPU]
if device == 'cuda':
    activities.append(ProfilerActivity.CUDA)

with profile(activities=activities, record_shapes=False) as prof:
    with record_function(" Non-Compilied Causal Attention"):
        for _ in range(25):
            model(x)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))


with profile(activities=activities, record_shapes=False) as prof:
    with record_function("Compiled Causal Attention"):
        for _ in range(25):
            compiled_model(x)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))

# For even more insights, you can export the trace and use ``chrome://tracing`` to view the results
#
# .. code-block:: python
#
#    prof.export_chrome_trace("compiled_causal_attention_trace.json").
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                                                   Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg     Self CUDA   Self CUDA %    CUDA total  CUDA time avg    # of Calls
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                         Non-Compilied Causal Attention         0.00%       0.000us         0.00%       0.000us       0.000us      10.515ms       101.39%      10.515ms      10.515ms             1
                         Non-Compilied Causal Attention        20.72%       2.282ms        75.23%       8.284ms       8.284ms       0.000us         0.00%      10.371ms      10.371ms             1
                                           aten::linear         1.14%     126.000us        28.07%       3.091ms      61.823us       0.000us         0.00%       7.749ms     154.980us            50
                                           aten::matmul         2.18%     239.531us        24.11%       2.655ms      53.096us       0.000us         0.00%       7.749ms     154.980us            50
                                               aten::mm        15.35%       1.690ms        19.65%       2.164ms      43.274us       7.749ms        74.72%       7.749ms     154.980us            50
         ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_tn         0.00%       0.000us         0.00%       0.000us       0.000us       5.544ms        53.46%       5.544ms     221.767us            25
                     aten::scaled_dot_product_attention         1.91%     210.851us        17.21%       1.896ms      75.823us       0.000us         0.00%       2.622ms     104.893us            25
              aten::_scaled_dot_product_flash_attention         2.87%     316.371us        15.30%       1.685ms      67.389us       0.000us         0.00%       2.622ms     104.893us            25
                         aten::_flash_attention_forward         3.42%     377.071us        10.69%       1.177ms      47.081us       2.622ms        25.28%       2.622ms     104.893us            25
void pytorch_flash::flash_fwd_kernel<pytorch_flash::...         0.00%       0.000us         0.00%       0.000us       0.000us       2.622ms        25.28%       2.622ms     104.893us            25
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 11.012ms
Self CUDA time total: 10.371ms

-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                                                   Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg     Self CUDA   Self CUDA %    CUDA total  CUDA time avg    # of Calls
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                              Compiled Causal Attention         0.00%       0.000us         0.00%       0.000us       0.000us      10.569ms       101.84%      10.569ms      10.569ms             1
                              Compiled Causal Attention         8.70%     984.016us        73.88%       8.360ms       8.360ms       0.000us         0.00%      10.378ms      10.378ms             1
                                  Torch-Compiled Region         8.42%     952.756us        62.97%       7.126ms     285.053us       0.000us         0.00%      10.378ms     415.117us            25
                                       CompiledFunction        26.38%       2.985ms        54.55%       6.174ms     246.943us       0.000us         0.00%      10.378ms     415.117us            25
                                               aten::mm         9.38%       1.061ms        14.07%       1.592ms      31.842us       7.758ms        74.75%       7.758ms     155.157us            50
         ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_tn         0.00%       0.000us         0.00%       0.000us       0.000us       5.552ms        53.50%       5.552ms     222.092us            25
              aten::_scaled_dot_product_flash_attention         2.12%     239.381us        14.10%       1.596ms      63.844us       0.000us         0.00%       2.620ms     104.803us            25
                         aten::_flash_attention_forward         3.46%     391.220us        10.29%       1.165ms      46.582us       2.620ms        25.25%       2.620ms     104.803us            25
void pytorch_flash::flash_fwd_kernel<pytorch_flash::...         0.00%       0.000us         0.00%       0.000us       0.000us       2.620ms        25.25%       2.620ms     104.803us            25
ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_stages_3...         0.00%       0.000us         0.00%       0.000us       0.000us       2.206ms        21.25%       2.206ms      88.222us            25
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 11.316ms
Self CUDA time total: 10.378ms

之前的代码片段生成了一个报告,显示了在编译和非编译模块中消耗最多GPU执行时间的前10个PyTorch函数。分析表明,大多数GPU时间都集中在两个模块的同一组函数上。这里的原因是torch.compile非常擅长消除与PyTorch相关的框架开销。如果你的模型启动了大型、高效的CUDA内核,在这种情况下CausalSelfAttention就是如此,那么PyTorch的开销可以被隐藏。

实际上,你的模块通常不包含单一的CausalSelfAttention块。在实验Andrej Karpathy NanoGPT仓库时,编译模块将每个训练步骤的时间从6090.49ms减少到3273.17ms!这是在NanoGPT的ae3a8d5提交上,使用莎士比亚数据集进行训练时完成的。

使用SDPA与attn_bias子类

# As of PyTorch 2.3, we have added a new submodule that contains tensor subclasses.
# Designed to be used with ``torch.nn.functional.scaled_dot_product_attention``.
# The module is named ``torch.nn.attention.bias`` and contains the following two
# utilities for generating causal attention variants:
#
# - ``torch.nn.attention.bias.causal_upper_left``
# - ``torch.nn.attention.bias.causal_lower_right``
#
# .. note::
#    The current argument ``is_causal`` in ``torch.nn.functional.scaled_dot_product_attention``
#    is the same as using ``torch.nn.attention.bias.causal_upper_left``.
#

from torch.nn.attention.bias import causal_lower_right, causal_upper_left

batch_size = 32
sequence_length_q = 2
sequence_length_kv = 10
num_heads = 16
embed_dimension = 32

dtype = torch.float16

query = torch.rand(batch_size, num_heads, sequence_length_q, embed_dimension, device=device, dtype=dtype)
key = torch.rand(batch_size, num_heads, sequence_length_kv, embed_dimension, device=device, dtype=dtype)
value = torch.rand(batch_size, num_heads, sequence_length_kv, embed_dimension, device=device, dtype=dtype)

upper_left_bias = causal_upper_left(sequence_length_q, sequence_length_kv)
lower_right_bias = causal_lower_right(sequence_length_q, sequence_length_kv)

print(type(upper_left_bias))
print(type(lower_right_bias))

assert type(upper_left_bias) == type(lower_right_bias)
assert issubclass(type(upper_left_bias), torch.Tensor)

# As you can see from the previous output, are the same type ``torch.nn.attention.bias.CausalBias``
# and subclass ``torch.Tensor``

# Lets see what these tensors look like
print(upper_left_bias)
print(lower_right_bias)

# Upper Left Bias aligns the causal attention mask to the upper left corner of the attention scores matrix.
# This only has an impact when the attention scores matrix is not square, which is common for decoding use cases.
# Another way of thinking about this concept is that when you use upper left bias,
# the 0th token in the query is aligned to the 0th token in the key, while for lower right bias,
# Assuming the attention score matrix is two dimensional, ``attn_score[0][0]`` is the attention score
# between the 0th token in the query and the 0th token in the key.
# For lower right bias, the sequence of q is aligned so that the last token in q is aligned to the last token in k
# (for example, ``attn_score[-1][-1])`` is all True since the last token in q is at the same position as the last token in k
# even if the sequence length of q and k are different.

# These objects are intended to be used with sdpa
out_upper_left = F.scaled_dot_product_attention(query, key, value, upper_left_bias)
out_lower_right = F.scaled_dot_product_attention(query, key, value, lower_right_bias)
out_is_causal = F.scaled_dot_product_attention(query, key, value, is_causal=True)

assert torch.allclose(out_upper_left, out_is_causal)
assert not torch.allclose(out_upper_left, out_lower_right)

# These attention biases should also be compatible with torch.compile
compiled_sdpa = torch.compile(F.scaled_dot_product_attention, fullgraph=True)
out_upper_left = compiled_sdpa(query, key, value, upper_left_bias)
<class 'torch.nn.attention.bias.CausalBias'>
<class 'torch.nn.attention.bias.CausalBias'>
tensor([[ True, False, False, False, False, False, False, False, False, False],
        [ True,  True, False, False, False, False, False, False, False, False]])
tensor([[ True,  True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True,  True,  True]])

结论

在本教程中,我们展示了torch.nn.functional.scaled_dot_product_attention的基本用法。我们展示了如何使用sdpa_kernel上下文管理器来确保在GPU上使用特定的实现。此外,我们构建了一个简单的CausalSelfAttention模块,该模块与NestedTensor兼容并且可被torch编译。在此过程中,我们展示了如何使用分析工具来探索用户定义模块的性能特征。

脚本总运行时间: ( 0 分钟 7.698 秒)

Gallery generated by Sphinx-Gallery

优云智算