DWT_MLEAD¶
- class DWT_MLEAD(start_level: int = 3, quantile_boundary_type: str = 'percentile', quantile_epsilon: float = 0.01)[source]¶
DWT-MLEAD异常检测器。
DWT-MLEAD 是一种异常检测算法,它使用离散小波变换(DWT)和最大似然估计(MLE)来检测单变量时间序列中的异常。该算法使用 Haar 小波进行多级 DWT,在 DWT 系数上滑动窗口,并使用高斯分布估计每个窗口的似然。通过将似然与每个级别的分位数边界进行比较,并将异常计数传递到各个时间点来检测异常,我们将其用作异常分数。原始论文 [1] 随后对异常进行聚类以确定异常中心。此步骤在此版本中未实现。
- Parameters:
- start_levelint, default=3
开始异常检测的级别。必须大于等于0且小于log_2(n_timepoints)。
- quantile_boundary_typestr, default=’percentile’
用于分位数的边界类型。必须是‘percentile’,‘monte-carlo’尚未实现。
- quantile_epsilonfloat, default=0.01
分位数边界的epsilon值。必须在[0, 1]范围内。
注释
Capabilities ¶ 缺失值
无
多线程
否
单变量
是
多变量
否
此实现并不完全与原始论文[1]匹配。我们做了以下更改:
我们使用随着层级数减少的DWT系数的窗口大小,因为否则我们将有太少的项目来滑动窗口。
我们排除了最高级别的系数,因为它们只包含一个条目,因此不适合在其上滑动长度为2的窗口。
我们尚未实现蒙特卡洛分位数边界类型。
我们不执行异常聚类步骤来确定异常中心。 相反,我们返回原始时间序列中每个时间步的异常分数。
参考文献
示例
>>> import numpy as np >>> from aeon.anomaly_detection import DWT_MLEAD >>> X = np.array([1, 2, 3, 4, 1, 2, 3, 3, 2, 8, 9, 8, 1, 2, 3, 4], dtype=np.float64) >>> detector = DWT_MLEAD( ... start_level=1, quantile_boundary_type='percentile', quantile_epsilon=0.01 ... ) >>> detector.fit_predict(X) array([0., 0., 0., 0., 0., 0., 0., 0., 2., 2., 2., 2., 0., 0., 0., 0.])
方法
clone([random_state])获取具有相同超参数的对象的克隆。
fit(X[, y, axis])将时间序列异常检测器拟合到X。
fit_predict(X[, y, axis])拟合时间序列异常检测器并查找X的异常。
get_class_tag(tag_name[, raise_error, ...])从估计器类获取标签值(仅限类标签)。
从估计器类及其所有父类中获取类标签。
get_fitted_params([deep])获取拟合参数。
Sklearn 元数据路由。
get_params([deep])获取此估计器的参数。
get_tag(tag_name[, raise_error, ...])从估计器类中获取标签值。
get_tags()从估计器中获取标签。
predict(X[, axis])在X中查找异常。
reset([keep])将对象重置为初始化后的干净状态。
set_params(**params)设置此估计器的参数。
set_tags(**tag_dict)将动态标签设置为给定值。
- clone(random_state=None)[source]¶
获取具有相同超参数的对象克隆。
克隆是一个没有共享引用的不同对象,处于初始化后的状态。 这个函数等同于返回自身的
sklearn.clone。 在值上等同于type(self)(**self.get_params(deep=False))。- Parameters:
- random_stateint, RandomState instance, or None, default=None
设置克隆的随机状态。如果为None,则不设置随机状态。 如果为int,random_state是随机数生成器使用的种子。 如果为RandomState实例,random_state是随机数生成器。
- Returns:
- estimatorobject
type(self)的实例,self 的克隆(见上文)
- fit(X, y=None, axis=1)[source]¶
将时间序列异常检测器拟合到X。
如果标签
fit_is_empty为真,这只会将is_fitted标签设置为真。否则,它会检查self是否可以处理X,将X格式化为self所需的结构,然后将X(可能还有y)传递给_fit。- Parameters:
- Xone of aeon.base._base_series.VALID_SERIES_INPUT_TYPES
用于拟合模型的时间序列。 一个有效的aeon时间序列数据结构。有关aeon支持的类型,请参见 aeon.base._base_series.VALID_SERIES_INPUT_TYPES。
- yone of aeon.base._base_series.VALID_SERIES_INPUT_TYPES, default=None
时间序列的目标值。 一个有效的aeon时间序列数据结构。请参阅 aeon.base._base_series.VALID_SERIES_INPUT_TYPES以了解aeon支持的类型。
- axisint
输入序列的时间点轴,如果是2D的。如果
axis==0,则假设每列是一个时间序列,每行是一个时间点。即数据的形状为(n_timepoints, n_channels)。axis==1表示时间序列在行中,即数据的形状为(n_channels, n_timepoints)。
- Returns:
- BaseAnomalyDetector
拟合的估计器,引用自身。
- fit_predict(X, y=None, axis=1) ndarray[source]¶
拟合时间序列异常检测器并查找X的异常。
- Parameters:
- Xone of aeon.base._base_series.VALID_SERIES_INPUT_TYPES
用于拟合模型的时间序列。 一个有效的aeon时间序列数据结构。请参阅 aeon.base._base_series.VALID_INPUT_TYPES以了解aeon支持的类型。
- yone of aeon.base._base_series.VALID_SERIES_INPUT_TYPES, default=None
时间序列的目标值。 一个有效的aeon时间序列数据结构。请参阅 aeon.base._base_series.VALID_SERIES_INPUT_TYPES以了解aeon支持的类型。
- axisint, default=1
输入序列的时间点轴,如果是2D的。如果
axis==0,则假设每列是一个时间序列,每行是一个时间点。即数据的形状为(n_timepoints, n_channels)。axis==1表示时间序列在行中,即数据的形状为(n_channels, n_timepoints)。
- Returns:
- np.ndarray
一个布尔、整数或浮点数数组,长度为len(X),其中每个元素指示相应的子序列是否异常或其异常分数。
- classmethod get_class_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
从估计器类获取标签值(仅限类标签)。
- Parameters:
- tag_namestr
标签值的名称。
- raise_errorbool, default=True
当未找到标签时是否引发ValueError。
- tag_value_defaultany type, default=None
如果未找到标签且未引发错误,则使用默认/回退值。
- Returns:
- tag_value
cls中
tag_name标签的值。 如果未找到,当raise_error为True时返回错误,否则返回tag_value_default。
- Raises:
- ValueError
如果
raise_error为 True 并且tag_name不在self.get_tags().keys()中
示例
>>> from aeon.classification import DummyClassifier >>> DummyClassifier.get_class_tag("capability:multivariate") True
- classmethod get_class_tags()[source]¶
从估计器类及其所有父类获取类标签。
- Returns:
- collected_tagsdict
标签名称和标签值对的字典。 通过嵌套继承从
_tags类属性中收集。 这些不会被set_tags或类__init__调用设置的动态标签覆盖。
- get_fitted_params(deep=True)[source]¶
获取拟合参数。
- State required:
需要状态为“已拟合”。
- Parameters:
- deepbool, default=True
如果为True,将返回此估计器的拟合参数以及包含的作为估计器的子对象。
- Returns:
- fitted_paramsdict
拟合参数名称映射到它们的值。
- get_params(deep=True)[source]¶
获取此估计器的参数。
- Parameters:
- deepbool, default=True
如果为True,将返回此估计器及其包含的子对象的参数。
- Returns:
- paramsdict
参数名称映射到它们的值。
- get_tag(tag_name, raise_error=True, tag_value_default=None)[source]¶
从估计器类获取标签值。
包括动态和覆盖的标签。
- Parameters:
- tag_namestr
要检索的标签名称。
- raise_errorbool, default=True
当未找到标签时是否引发ValueError。
- tag_value_defaultany type, default=None
如果未找到标签且未引发错误,则使用默认/回退值。
- Returns:
- tag_value
自身中
tag_name标签的值。 如果未找到,当raise_error为True时返回错误,否则返回tag_value_default。
- Raises:
- ValueError
如果 raise_error 是
True并且tag_name不在self.get_tags().keys()中
示例
>>> from aeon.classification import DummyClassifier >>> d = DummyClassifier() >>> d.get_tag("capability:multivariate") True
- get_tags()[source]¶
从估计器中获取标签。
包括动态和覆盖的标签。
- Returns:
- collected_tagsdict
标签名称和标签值对的字典。 通过嵌套继承从
_tags类属性收集,然后从__init__或set_tags中收集任何被覆盖和新添加的标签。
- predict(X, axis=1) ndarray[source]¶
在X中查找异常。
- Parameters:
- Xone of aeon.base._base_series.VALID_SERIES_INPUT_TYPES
用于拟合模型的时间序列。 一个有效的aeon时间序列数据结构。有关aeon支持的类型,请参见 aeon.base._base_series.VALID_SERIES_INPUT_TYPES。
- axisint, default=1
输入序列的时间点轴,如果是2D的。如果
axis==0,则假设每列是一个时间序列,每行是一个时间点。即数据的形状为(n_timepoints, n_channels)。axis==1表示时间序列在行中,即数据的形状为(n_channels, n_timepoints)。
- Returns:
- np.ndarray
一个布尔、整数或浮点数数组,长度为len(X),其中每个元素指示相应的子序列是否异常或其异常分数。
- reset(keep=None)[source]¶
将对象重置为初始化后的干净状态。
在调用
self.reset()之后,self的值等于或类似于type(self)(**self.get_params(deep=False)),假设没有使用keep保留其他属性。- Detailed behaviour:
- removes any object attributes, except:
超参数(
__init__的参数) 包含双下划线的对象属性,即字符串“__”
使用当前超参数的值(
get_params的结果)运行__init__- Not affected by the reset are:
包含双下划线的对象属性 类和对象方法,类属性 在
keep参数中指定的任何属性
- Parameters:
- keepNone, str, or list of str, default=None
如果为None,则除了超参数外,所有属性都将被移除。 如果为str,则仅保留具有此名称的属性。 如果为str列表,则仅保留具有这些名称的属性。
- Returns:
- selfobject
自我引用。