设置目标延迟特性
- class dgl.dataloading.base.set_dst_lazy_features(g, feature_names)[source]
基础类:
将懒加载特征分配给输入图的
dstdata
以进行预取优化。When used in a
Sampler
, lazy features mark which data should be fetched before computation in model. See guide-minibatch-prefetching for a detailed explanation.如果图是同质的,这相当于:
g.dstdata.update({k: LazyFeature(k, g.dstdata[dgl.NID]) for k in feature_names})
如果图是异构的,这相当于:
for type_, names in feature_names.items(): g.dstnodes[type_].data.update( {k: LazyFeature(k, g.dstnodes[type_].data[dgl.NID]) for k in names})
- Parameters:
另请参阅
dgl.LazyFeature