关系图卷积网络

作者: Lingfan Yu, Mufei Li, Zheng Zhang

警告

The tutorial aims at gaining insights into the paper, with code as a mean of explanation. The implementation thus is NOT optimized for running efficiency. For recommended implementation, please refer to the official examples.

在本教程中,您将学习如何实现关系图卷积网络(R-GCN)。这种类型的网络是为了将GCN推广到处理知识库中实体之间的不同关系而做出的一种努力。要了解更多关于R-GCN背后的研究,请参阅使用图卷积网络建模关系数据

简单的图卷积网络(GCN)利用数据集的结构信息(即图连接性)来改进节点表示的提取。图的边保持为无类型。

知识图谱由一组三元组组成,形式为主语、关系、宾语。因此,边编码了重要信息,并且有自己的嵌入需要学习。此外,任何给定的一对之间可能存在多条边。

R-GCN简介

统计关系学习 (SRL) 中,有两个基本任务:

  • 实体分类 - 在这里你为实体分配类型和分类属性。

  • 链接预测 - 在这里你恢复缺失的三元组。

在这两种情况下,缺失的信息预计可以从图的邻域结构中恢复。例如,之前引用的R-GCN论文提供了以下示例。知道Mikhail Baryshnikov在Vaganova Academy接受教育,意味着Mikhail Baryshnikov应该具有person标签,并且三元组(Mikhail Baryshnikov, lived in, Russia)必须属于知识图谱。

R-GCN 使用常见的图卷积网络解决了这两个问题。它通过多边编码扩展以计算实体的嵌入,但具有不同的下游处理。

  • 实体分类是通过在实体(节点)的最终嵌入上附加一个softmax分类器来完成的。训练是通过标准交叉熵损失进行的。

  • 链接预测是通过使用参数化的评分函数,利用自动编码器架构重建边来完成的。训练使用负采样。

本教程专注于第一个任务,实体分类,以展示如何生成实体表示。完整代码可以在DGL的Github仓库中找到。

R-GCN的关键思想

回想一下,在GCN中,每个节点\(i\)在第\((l+1)^{th}\)层的隐藏表示是通过以下方式计算的:

\[\begin{split}h_i^{l+1} = \sigma\left(\sum_{j\in N_i}\frac{1}{c_i} W^{(l)} h_j^{(l)}\right)~~~~~~~~~~(1)\\\end{split}\]

其中 \(c_i\) 是一个归一化常数。

R-GCN和GCN之间的关键区别在于,在R-GCN中,边可以表示不同的关系。在GCN中,方程\((1)\)中的权重\(W^{(l)}\)在第\(l\)层中由所有边共享。相比之下,在R-GCN中,不同的边类型使用不同的权重,只有相同关系类型\(r\)的边与相同的投影权重\(W_r^{(l)}\)相关联。

因此,R-GCN中第\((l+1)^{th}\)层实体的隐藏表示可以表示为以下公式:

\[\begin{split}h_i^{l+1} = \sigma\left(W_0^{(l)}h_i^{(l)}+\sum_{r\in R}\sum_{j\in N_i^r}\frac{1}{c_{i,r}}W_r^{(l)}h_j^{(l)}\right)~~~~~~~~~~(2)\\\end{split}\]

其中 \(N_i^r\) 表示节点 \(i\) 在关系 \(r\in R\) 下的邻居索引集合,\(c_{i,r}\) 是一个归一化常数。在实体分类中,R-GCN 论文使用 \(c_{i,r}=|N_i^r|\)

直接应用上述方程的问题是参数数量的快速增长,特别是在高度多关系数据的情况下。为了减少模型参数的大小并防止过拟合,原始论文提出了使用基分解的方法。

\[\begin{split}W_r^{(l)}=\sum\limits_{b=1}^B a_{rb}^{(l)}V_b^{(l)}~~~~~~~~~~(3)\\\end{split}\]

因此,权重 \(W_r^{(l)}\) 是基础变换 \(V_b^{(l)}\) 与系数 \(a_{rb}^{(l)}\) 的线性组合。 基础的数量 \(B\) 远小于知识库中关系的数量。

注意

另一种权重正则化方法,块分解,已在链接预测中实现。

在DGL中实现R-GCN

R-GCN模型由多个R-GCN层组成。第一个R-GCN层也作为输入层,接收与节点实体相关联的特征(例如描述文本)并将其投影到隐藏空间。在本教程中,我们仅使用实体ID作为实体特征。

R-GCN 层

对于每个节点,R-GCN层执行以下步骤:

  • 使用节点表示和与边类型相关的权重矩阵计算传出消息(消息函数)

  • 聚合传入的消息并生成新的节点表示(减少和应用函数)

以下代码是R-GCN隐藏层的定义。

注意

每种关系类型都与不同的权重相关联。因此,完整的权重矩阵具有三个维度:关系、输入特征、输出特征。

注意

这展示了如何从头开始实现一个R-GCN。DGL提供了一个更高效的builtin R-GCN layer module

import os

os.environ["DGLBACKEND"] = "pytorch"
from functools import partial

import dgl
import dgl.function as fn
import torch
import torch.nn as nn
import torch.nn.functional as F
from dgl import DGLGraph


class RGCNLayer(nn.Module):
    def __init__(
        self,
        in_feat,
        out_feat,
        num_rels,
        num_bases=-1,
        bias=None,
        activation=None,
        is_input_layer=False,
    ):
        super(RGCNLayer, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.num_rels = num_rels
        self.num_bases = num_bases
        self.bias = bias
        self.activation = activation
        self.is_input_layer = is_input_layer

        # sanity check
        if self.num_bases <= 0 or self.num_bases > self.num_rels:
            self.num_bases = self.num_rels
        # weight bases in equation (3)
        self.weight = nn.Parameter(
            torch.Tensor(self.num_bases, self.in_feat, self.out_feat)
        )
        if self.num_bases < self.num_rels:
            # linear combination coefficients in equation (3)
            self.w_comp = nn.Parameter(
                torch.Tensor(self.num_rels, self.num_bases)
            )
        # add bias
        if self.bias:
            self.bias = nn.Parameter(torch.Tensor(out_feat))
        # init trainable parameters
        nn.init.xavier_uniform_(
            self.weight, gain=nn.init.calculate_gain("relu")
        )
        if self.num_bases < self.num_rels:
            nn.init.xavier_uniform_(
                self.w_comp, gain=nn.init.calculate_gain("relu")
            )
        if self.bias:
            nn.init.xavier_uniform_(
                self.bias, gain=nn.init.calculate_gain("relu")
            )

    def forward(self, g):
        if self.num_bases < self.num_rels:
            # generate all weights from bases (equation (3))
            weight = self.weight.view(
                self.in_feat, self.num_bases, self.out_feat
            )
            weight = torch.matmul(self.w_comp, weight).view(
                self.num_rels, self.in_feat, self.out_feat
            )
        else:
            weight = self.weight
        if self.is_input_layer:

            def message_func(edges):
                # for input layer, matrix multiply can be converted to be
                # an embedding lookup using source node id
                embed = weight.view(-1, self.out_feat)
                index = edges.data[dgl.ETYPE] * self.in_feat + edges.src["id"]
                return {"msg": embed[index] * edges.data["norm"]}

        else:

            def message_func(edges):
                w = weight[edges.data[dgl.ETYPE]]
                msg = torch.bmm(edges.src["h"].unsqueeze(1), w).squeeze()
                msg = msg * edges.data["norm"]
                return {"msg": msg}

        def apply_func(nodes):
            h = nodes.data["h"]
            if self.bias:
                h = h + self.bias
            if self.activation:
                h = self.activation(h)
            return {"h": h}

        g.update_all(message_func, fn.sum(msg="msg", out="h"), apply_func)

完整的R-GCN模型定义

class Model(nn.Module):
    def __init__(
        self,
        num_nodes,
        h_dim,
        out_dim,
        num_rels,
        num_bases=-1,
        num_hidden_layers=1,
    ):
        super(Model, self).__init__()
        self.num_nodes = num_nodes
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.num_rels = num_rels
        self.num_bases = num_bases
        self.num_hidden_layers = num_hidden_layers

        # create rgcn layers
        self.build_model()

        # create initial features
        self.features = self.create_features()

    def build_model(self):
        self.layers = nn.ModuleList()
        # input to hidden
        i2h = self.build_input_layer()
        self.layers.append(i2h)
        # hidden to hidden
        for _ in range(self.num_hidden_layers):
            h2h = self.build_hidden_layer()
            self.layers.append(h2h)
        # hidden to output
        h2o = self.build_output_layer()
        self.layers.append(h2o)

    # initialize feature for each node
    def create_features(self):
        features = torch.arange(self.num_nodes)
        return features

    def build_input_layer(self):
        return RGCNLayer(
            self.num_nodes,
            self.h_dim,
            self.num_rels,
            self.num_bases,
            activation=F.relu,
            is_input_layer=True,
        )

    def build_hidden_layer(self):
        return RGCNLayer(
            self.h_dim,
            self.h_dim,
            self.num_rels,
            self.num_bases,
            activation=F.relu,
        )

    def build_output_layer(self):
        return RGCNLayer(
            self.h_dim,
            self.out_dim,
            self.num_rels,
            self.num_bases,
            activation=partial(F.softmax, dim=1),
        )

    def forward(self, g):
        if self.features is not None:
            g.ndata["id"] = self.features
        for layer in self.layers:
            layer(g)
        return g.ndata.pop("h")

处理数据集

本教程使用来自R-GCN论文的应用信息学和形式描述方法研究所(AIFB)数据集。

# load graph data
dataset = dgl.data.rdf.AIFBDataset()
g = dataset[0]
category = dataset.predict_category
train_mask = g.nodes[category].data.pop("train_mask")
test_mask = g.nodes[category].data.pop("test_mask")
train_idx = torch.nonzero(train_mask, as_tuple=False).squeeze()
test_idx = torch.nonzero(test_mask, as_tuple=False).squeeze()
labels = g.nodes[category].data.pop("label")
num_rels = len(g.canonical_etypes)
num_classes = dataset.num_classes
# normalization factor
for cetype in g.canonical_etypes:
    g.edges[cetype].data["norm"] = dgl.norm_by_dst(g, cetype).unsqueeze(1)
category_id = g.ntypes.index(category)
Done loading data from cached files.

创建图形和模型

# configurations
n_hidden = 16  # number of hidden units
n_bases = -1  # use number of relations as number of bases
n_hidden_layers = 0  # use 1 input layer, 1 output layer, no hidden layer
n_epochs = 25  # epochs to train
lr = 0.01  # learning rate
l2norm = 0  # L2 norm coefficient

# create graph
g = dgl.to_homogeneous(g, edata=["norm"])
node_ids = torch.arange(g.num_nodes())
target_idx = node_ids[g.ndata[dgl.NTYPE] == category_id]

# create model
model = Model(
    g.num_nodes(),
    n_hidden,
    num_classes,
    num_rels,
    num_bases=n_bases,
    num_hidden_layers=n_hidden_layers,
)

Training loop

# optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=l2norm)

print("start training...")
model.train()
for epoch in range(n_epochs):
    optimizer.zero_grad()
    logits = model.forward(g)
    logits = logits[target_idx]
    loss = F.cross_entropy(logits[train_idx], labels[train_idx])
    loss.backward()

    optimizer.step()

    train_acc = torch.sum(logits[train_idx].argmax(dim=1) == labels[train_idx])
    train_acc = train_acc.item() / len(train_idx)
    val_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
    val_acc = torch.sum(logits[test_idx].argmax(dim=1) == labels[test_idx])
    val_acc = val_acc.item() / len(test_idx)
    print(
        "Epoch {:05d} | ".format(epoch)
        + "Train Accuracy: {:.4f} | Train Loss: {:.4f} | ".format(
            train_acc, loss.item()
        )
        + "Validation Accuracy: {:.4f} | Validation loss: {:.4f}".format(
            val_acc, val_loss.item()
        )
    )
start training...
Epoch 00000 | Train Accuracy: 0.2857 | Train Loss: 1.3858 | Validation Accuracy: 0.3611 | Validation loss: 1.3856
Epoch 00001 | Train Accuracy: 0.9214 | Train Loss: 1.3555 | Validation Accuracy: 0.9444 | Validation loss: 1.3616
Epoch 00002 | Train Accuracy: 0.9357 | Train Loss: 1.3086 | Validation Accuracy: 0.9444 | Validation loss: 1.3230
Epoch 00003 | Train Accuracy: 0.9357 | Train Loss: 1.2449 | Validation Accuracy: 0.9167 | Validation loss: 1.2693
Epoch 00004 | Train Accuracy: 0.9357 | Train Loss: 1.1717 | Validation Accuracy: 0.9167 | Validation loss: 1.2051
Epoch 00005 | Train Accuracy: 0.9357 | Train Loss: 1.1008 | Validation Accuracy: 0.9167 | Validation loss: 1.1406
Epoch 00006 | Train Accuracy: 0.9357 | Train Loss: 1.0401 | Validation Accuracy: 0.9167 | Validation loss: 1.0842
Epoch 00007 | Train Accuracy: 0.9357 | Train Loss: 0.9914 | Validation Accuracy: 0.9167 | Validation loss: 1.0380
Epoch 00008 | Train Accuracy: 0.9357 | Train Loss: 0.9528 | Validation Accuracy: 0.9444 | Validation loss: 1.0004
Epoch 00009 | Train Accuracy: 0.9357 | Train Loss: 0.9222 | Validation Accuracy: 0.9444 | Validation loss: 0.9696
Epoch 00010 | Train Accuracy: 0.9429 | Train Loss: 0.8972 | Validation Accuracy: 0.9444 | Validation loss: 0.9439
Epoch 00011 | Train Accuracy: 0.9500 | Train Loss: 0.8761 | Validation Accuracy: 0.9444 | Validation loss: 0.9222
Epoch 00012 | Train Accuracy: 0.9500 | Train Loss: 0.8582 | Validation Accuracy: 0.9722 | Validation loss: 0.9035
Epoch 00013 | Train Accuracy: 0.9500 | Train Loss: 0.8435 | Validation Accuracy: 0.9722 | Validation loss: 0.8876
Epoch 00014 | Train Accuracy: 0.9500 | Train Loss: 0.8320 | Validation Accuracy: 0.9722 | Validation loss: 0.8745
Epoch 00015 | Train Accuracy: 0.9500 | Train Loss: 0.8234 | Validation Accuracy: 0.9722 | Validation loss: 0.8642
Epoch 00016 | Train Accuracy: 0.9500 | Train Loss: 0.8172 | Validation Accuracy: 0.9722 | Validation loss: 0.8562
Epoch 00017 | Train Accuracy: 0.9500 | Train Loss: 0.8127 | Validation Accuracy: 0.9722 | Validation loss: 0.8501
Epoch 00018 | Train Accuracy: 0.9500 | Train Loss: 0.8094 | Validation Accuracy: 0.9722 | Validation loss: 0.8454
Epoch 00019 | Train Accuracy: 0.9500 | Train Loss: 0.8068 | Validation Accuracy: 0.9722 | Validation loss: 0.8417
Epoch 00020 | Train Accuracy: 0.9500 | Train Loss: 0.8046 | Validation Accuracy: 0.9722 | Validation loss: 0.8388
Epoch 00021 | Train Accuracy: 0.9500 | Train Loss: 0.8025 | Validation Accuracy: 0.9722 | Validation loss: 0.8363
Epoch 00022 | Train Accuracy: 0.9500 | Train Loss: 0.8005 | Validation Accuracy: 0.9722 | Validation loss: 0.8343
Epoch 00023 | Train Accuracy: 0.9500 | Train Loss: 0.7983 | Validation Accuracy: 0.9722 | Validation loss: 0.8326
Epoch 00024 | Train Accuracy: 0.9500 | Train Loss: 0.7959 | Validation Accuracy: 0.9722 | Validation loss: 0.8312