最后,我们介绍了如何让Gradio演示自动刷新或持续流式传输数据。
您可以通过在界面中设置live=True来自动刷新界面。现在,界面将在用户输入更改时立即重新计算。
import gradio as gr
def calculator(num1, operation, num2):
if operation == "add":
return num1 + num2
elif operation == "subtract":
return num1 - num2
elif operation == "multiply":
return num1 * num2
elif operation == "divide":
return num1 / num2
demo = gr.Interface(
calculator,
[
"number",
gr.Radio(["add", "subtract", "multiply", "divide"]),
"number"
],
"number",
live=True,
)
demo.launch()
请注意,这里没有提交按钮,因为界面在更改时会自动重新提交。
一些组件具有“流式”模式,例如麦克风模式下的Audio组件,或网络摄像头模式下的Image组件。流式意味着数据会持续发送到后端,并且Interface函数会持续重新运行。
gr.Audio(source='microphone') 和 gr.Audio(source='microphone', streaming=True) 的区别在于,当两者都在 gr.Interface(live=True) 中使用时,第一个 Component 会在用户停止录音时自动提交数据并运行 Interface 函数,而第二个 Component 会在录音期间持续发送数据并运行 Interface 函数。
这是从网络摄像头流式传输图像的示例代码。
import gradio as gr
import numpy as np
def flip(im):
return np.flipud(im)
demo = gr.Interface(
flip,
gr.Image(sources=["webcam"], streaming=True),
"image",
live=True
)
demo.launch()
流式处理也可以在输出组件中完成。一个gr.Audio(streaming=True)输出组件可以接收由生成器函数逐段生成的音频数据流,并将它们组合成一个单一的音频文件。有关详细示例,请参阅我们关于使用Gradio进行自动语音识别的指南。