• Tutorials >
  • (prototype) PyTorch 2 Export Quantization-Aware Training (QAT)
Shortcuts

(原型) PyTorch 2 导出量化感知训练 (QAT)

创建于:2023年10月02日 | 最后更新:2024年10月23日 | 最后验证:2024年11月05日

作者: Andrew Or

本教程展示了如何基于torch.export.export在图模式下执行量化感知训练(QAT)。 有关PyTorch 2导出量化的更多详细信息,请参阅训练后量化教程

PyTorch 2 导出 QAT 流程如下所示——它在很大程度上类似于训练后量化(PTQ)流程:

import torch
from torch._export import capture_pre_autograd_graph
from torch.ao.quantization.quantize_pt2e import (
  prepare_qat_pt2e,
  convert_pt2e,
)
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
  XNNPACKQuantizer,
  get_symmetric_quantization_config,
)

class M(torch.nn.Module):
   def __init__(self):
      super().__init__()
      self.linear = torch.nn.Linear(5, 10)

   def forward(self, x):
      return self.linear(x)


example_inputs = (torch.randn(1, 5),)
m = M()

# Step 1. program capture
# This is available for pytorch 2.5+, for more details on lower pytorch versions
# please check `Export the model with torch.export` section
m = torch.export.export_for_training(m, example_inputs).module()
# we get a model with aten ops

# Step 2. quantization-aware training
# backend developer will write their own Quantizer and expose methods to allow
# users to express how they want the model to be quantized
quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config())
m = prepare_qat_pt2e(m, quantizer)

# train omitted

m = convert_pt2e(m)
# we have a model with aten ops doing integer computations when possible

# move the quantized model to eval mode, equivalent to `m.eval()`
torch.ao.quantization.move_exported_model_to_eval(m)

请注意,在程序捕获后调用model.eval()model.train()是不允许的,因为这些方法不再正确改变某些操作的行为,如dropout和批量归一化。相反,请使用torch.ao.quantization.move_exported_model_to_eval()torch.ao.quantization.move_exported_model_to_train()(即将推出)分别。

定义辅助函数并准备数据集

要使用整个ImageNet数据集运行本教程中的代码,首先按照ImageNet Data中的说明下载ImageNet。将下载的文件解压缩到data_path文件夹中。

接下来,下载torchvision resnet18模型并将其重命名为data/resnet18_pretrained_float.pth

我们将从进行必要的导入开始,定义一些辅助函数并准备数据。这些步骤与静态急切模式后训练量化教程中定义的步骤非常相似:

import os
import sys
import time
import numpy as np

import torch
import torch.nn as nn
from torch.utils.data import DataLoader

import torchvision
from torchvision import datasets
from torchvision.models.resnet import resnet18
import torchvision.transforms as transforms

# Set up warnings
import warnings
warnings.filterwarnings(
    action='ignore',
    category=DeprecationWarning,
    module=r'.*'
)
warnings.filterwarnings(
    action='default',
    module=r'torch.ao.quantization'
)

# Specify random seed for repeatable results
_ = torch.manual_seed(191009)

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self, name, fmt=':f'):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
        return fmtstr.format(**self.__dict__)

def accuracy(output, target, topk=(1,)):
    """
    Computes the accuracy over the k top predictions for the specified
    values of k.
    """
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res

def evaluate(model, criterion, data_loader, device):
    torch.ao.quantization.move_exported_model_to_eval(model)
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    cnt = 0
    with torch.no_grad():
        for image, target in data_loader:
            image = image.to(device)
            target = target.to(device)
            output = model(image)
            loss = criterion(output, target)
            cnt += 1
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            top1.update(acc1[0], image.size(0))
            top5.update(acc5[0], image.size(0))
    print('')

    return top1, top5

def load_model(model_file):
    model = resnet18(pretrained=False)
    state_dict = torch.load(model_file, weights_only=True)
    model.load_state_dict(state_dict)
    return model

def print_size_of_model(model):
    if isinstance(model, torch.jit.RecursiveScriptModule):
        torch.jit.save(model, "temp.p")
    else:
        torch.jit.save(torch.jit.script(model), "temp.p")
    print("Size (MB):", os.path.getsize("temp.p")/1e6)
    os.remove("temp.p")

def prepare_data_loaders(data_path):
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    dataset = torchvision.datasets.ImageNet(
        data_path, split="train", transform=transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))
    dataset_test = torchvision.datasets.ImageNet(
        data_path, split="val", transform=transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ]))

    train_sampler = torch.utils.data.RandomSampler(dataset)
    test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    data_loader = torch.utils.data.DataLoader(
        dataset, batch_size=train_batch_size,
        sampler=train_sampler)

    data_loader_test = torch.utils.data.DataLoader(
        dataset_test, batch_size=eval_batch_size,
        sampler=test_sampler)

    return data_loader, data_loader_test

def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches):
    # Note: do not call model.train() here, since this doesn't work on an exported model.
    # Instead, call `torch.ao.quantization.move_exported_model_to_train(model)`, which will
    # be added in the near future
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    avgloss = AverageMeter('Loss', '1.5f')

    cnt = 0
    for image, target in data_loader:
        start_time = time.time()
        print('.', end = '')
        cnt += 1
        image, target = image.to(device), target.to(device)
        output = model(image)
        loss = criterion(output, target)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        top1.update(acc1[0], image.size(0))
        top5.update(acc5[0], image.size(0))
        avgloss.update(loss, image.size(0))
        if cnt >= ntrain_batches:
            print('Loss', avgloss.avg)

            print('Training: * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
                  .format(top1=top1, top5=top5))
            return

    print('Full imagenet train set:  * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
          .format(top1=top1, top5=top5))
    return

data_path = '~/.data/imagenet'
saved_model_dir = 'data/'
float_model_file = 'resnet18_pretrained_float.pth'

train_batch_size = 32
eval_batch_size = 32

data_loader, data_loader_test = prepare_data_loaders(data_path)
example_inputs = (next(iter(data_loader))[0])
criterion = nn.CrossEntropyLoss()
float_model = load_model(saved_model_dir + float_model_file).to("cuda")

使用 torch.export 导出模型

以下是您可以使用torch.export导出模型的方法:

from torch._export import capture_pre_autograd_graph

example_inputs = (torch.rand(2, 3, 224, 224),)
# for pytorch 2.5+
exported_model = torch.export.export_for_training(float_model, example_inputs).module()
# for pytorch 2.4 and before
# from torch._export import capture_pre_autograd_graph
# exported_model = capture_pre_autograd_graph(model_to_quantize, example_inputs)
# or, to capture with dynamic dimensions:

# for pytorch 2.5+
dynamic_shapes = tuple(
  {0: torch.export.Dim("dim")} if i == 0 else None
  for i in range(len(example_inputs))
)
exported_model = torch.export.export_for_training(float_model, example_inputs, dynamic_shapes=dynamic_shapes).module()

# for pytorch 2.4 and before
# dynamic_shape API may vary as well
# from torch._export import dynamic_dim

# example_inputs = (torch.rand(2, 3, 224, 224),)
# exported_model = capture_pre_autograd_graph(
#     float_model,
#     example_inputs,
#     constraints=[dynamic_dim(example_inputs[0], 0)],
# )

导入后端特定的量化器并配置如何量化模型

以下代码片段描述了如何量化模型:

from torch.ao.quantization.quantizer.xnnpack_quantizer import (
    XNNPACKQuantizer,
    get_symmetric_quantization_config,
)
quantizer = XNNPACKQuantizer()
quantizer.set_global(get_symmetric_quantization_config(is_qat=True))

Quantizer 是后端特定的,每个 Quantizer 都会提供自己的方式,允许用户配置他们的模型。

注意

查看我们的 教程 ,其中描述了如何编写一个新的Quantizer

准备模型进行量化感知训练

prepare_qat_pt2e 在模型的适当位置插入伪量化,并执行适当的QAT“融合”,例如 Conv2d + BatchNorm2d,以获得更好的训练精度。融合的操作在准备图中表示为ATen操作的子图。

prepared_model = prepare_qat_pt2e(exported_model, quantizer)
print(prepared_model)

注意

如果你的模型包含批量归一化,你在图中得到的实际ATen操作取决于导出模型时模型的设备。如果模型在CPU上,那么你将得到torch.ops.aten._native_batch_norm_legit。如果模型在CUDA上,那么你将得到torch.ops.aten.cudnn_batch_norm。然而,这并不是根本性的,未来可能会有所变化。

在这两个操作之间,已经证明torch.ops.aten.cudnn_batch_norm在像MobileNetV2这样的模型上提供了更好的数值。要获取此操作,可以在导出之前调用model.cuda(),或者在准备后运行以下命令以手动交换操作:

for n in prepared_model.graph.nodes:
    if n.target == torch.ops.aten._native_batch_norm_legit.default:
        n.target = torch.ops.aten.cudnn_batch_norm.default
prepared_model.recompile()

在未来,我们计划整合批量归一化操作,使得上述操作将不再必要。

训练循环

训练循环与之前版本的QAT类似。为了获得更好的准确性,您可以选择在一定的epoch数后禁用观察者和更新批量归一化统计信息,或者每隔N个epoch评估一次QAT或迄今为止训练的量化模型。

num_epochs = 10
num_train_batches = 20
num_eval_batches = 20
num_observer_update_epochs = 4
num_batch_norm_update_epochs = 3
num_epochs_between_evals = 2

# QAT takes time and one needs to train over a few epochs.
# Train and check accuracy after each epoch
for nepoch in range(num_epochs):
    train_one_epoch(prepared_model, criterion, optimizer, data_loader, "cuda", num_train_batches)

    # Optionally disable observer/batchnorm stats after certain number of epochs
    if epoch >= num_observer_update_epochs:
        print("Disabling observer for subseq epochs, epoch = ", epoch)
        prepared_model.apply(torch.ao.quantization.disable_observer)
    if epoch >= num_batch_norm_update_epochs:
        print("Freezing BN for subseq epochs, epoch = ", epoch)
        for n in prepared_model.graph.nodes:
            # Args: input, weight, bias, running_mean, running_var, training, momentum, eps
            # We set the `training` flag to False here to freeze BN stats
            if n.target in [
                torch.ops.aten._native_batch_norm_legit.default,
                torch.ops.aten.cudnn_batch_norm.default,
            ]:
                new_args = list(n.args)
                new_args[5] = False
                n.args = new_args
        prepared_model.recompile()

    # Check the quantized accuracy every N epochs
    # Note: If you wish to just evaluate the QAT model (not the quantized model),
    # then you can just call `torch.ao.quantization.move_exported_model_to_eval/train`.
    # However, the latter API is not ready yet and will be available in the near future.
    if (nepoch + 1) % num_epochs_between_evals == 0:
        prepared_model_copy = copy.deepcopy(prepared_model)
        quantized_model = convert_pt2e(prepared_model_copy)
        top1, top5 = evaluate(quantized_model, criterion, data_loader_test, neval_batches=num_eval_batches)
        print('Epoch %d: Evaluation accuracy on %d images, %2.2f' % (nepoch, num_eval_batches * eval_batch_size, top1.avg))

保存和加载模型检查点

PyTorch 2 Export QAT 流程中的模型检查点与任何其他训练流程中的检查点相同。它们对于暂停训练并在稍后恢复、从失败的训练运行中恢复以及在稍后时间在不同机器上执行推理非常有用。您可以在训练期间或训练后保存模型检查点,如下所示:

checkpoint_path = "/path/to/my/checkpoint_%s.pth" % nepoch
torch.save(prepared_model.state_dict(), "checkpoint_path")

要加载检查点,您必须以与最初导出和准备模型完全相同的方式导出和准备模型。例如:

from torch._export import capture_pre_autograd_graph
from torch.ao.quantization.quantizer.xnnpack_quantizer import (
    XNNPACKQuantizer,
    get_symmetric_quantization_config,
)
from torchvision.models.resnet import resnet18

example_inputs = (torch.rand(2, 3, 224, 224),)
float_model = resnet18(pretrained=False)
exported_model = capture_pre_autograd_graph(float_model, example_inputs)
quantizer = XNNPACKQuantizer()
quantizer.set_global(get_symmetric_quantization_config(is_qat=True))
prepared_model = prepare_qat_pt2e(exported_model, quantizer)
prepared_model.load_state_dict(torch.load(checkpoint_path))

# resume training or perform inference

将训练好的模型转换为量化模型

convert_pt2e 接受一个校准后的模型并生成一个量化模型。 请注意,在推理之前,您必须首先调用 torch.ao.quantization.move_exported_model_to_eval() 以确保某些操作 如 dropout 在评估图中正确运行。否则,例如在推理期间的前向传递中,我们可能会继续错误地应用 dropout。

quantized_model = convert_pt2e(prepared_model)

# move certain ops like dropout to eval mode, equivalent to `m.eval()`
torch.ao.quantization.move_exported_model_to_eval(m)

print(quantized_model)

top1, top5 = evaluate(quantized_model, criterion, data_loader_test, neval_batches=num_eval_batches)
print('Final evaluation accuracy on %d images, %2.2f' % (num_eval_batches * eval_batch_size, top1.avg))

结论

在本教程中,我们演示了如何在PyTorch 2导出量化中运行量化感知训练(QAT)流程。转换后,其余流程与训练后量化(PTQ)相同;用户可以序列化/反序列化模型,并进一步将其降低到支持使用XNNPACK后端进行推理的后端。更多详情,请参阅PTQ教程

优云智算