分布式检查点(DCP)入门¶
创建于:2023年10月02日 | 最后更新:2024年10月30日 | 最后验证:2024年11月05日
作者: Iris Zhang, Rodrigo Kumpera, Chien-Chin Huang, Lucas Pasqualin
注意
在github上查看和编辑本教程。
先决条件:
在分布式训练期间检查点AI模型可能具有挑战性,因为参数和梯度分布在训练器之间,并且在恢复训练时可用训练器的数量可能会发生变化。 Pytorch分布式检查点(DCP)可以帮助简化这一过程。
在本教程中,我们展示了如何使用DCP API与一个简单的FSDP封装模型。
DCP 的工作原理¶
torch.distributed.checkpoint() 允许并行地从多个等级保存和加载模型。您可以使用此模块在任意数量的等级上并行保存,然后在加载时重新分片到不同的集群拓扑中。
此外,通过使用torch.distributed.checkpoint.state_dict()中的模块,
DCP提供了对在分布式设置中优雅处理state_dict生成和加载的支持。
这包括管理模型和优化器之间的完全限定名称(FQN)映射,并为PyTorch提供的并行性设置默认参数。
DCP 与 torch.save() 和 torch.load() 在一些重要方面有所不同:
每个检查点生成多个文件,每个等级至少一个。
它在原地操作,意味着模型应该首先分配其数据,DCP使用该存储空间。
DCP 提供了对 Stateful 对象(在 torch.distributed.checkpoint.stateful 中正式定义)的特殊处理,如果定义了 state_dict 和 load_state_dict 方法,则会自动调用它们。
注意
本教程中的代码在8-GPU服务器上运行,但可以轻松推广到其他环境。
如何使用DCP¶
这里我们使用一个用FSDP包装的玩具模型进行演示。同样地,这些API和逻辑可以应用于更大的模型以进行检查点保存。
保存¶
现在,让我们创建一个玩具模块,用FSDP包装它,给它提供一些虚拟输入数据,并保存它。
import os
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
import torch.multiprocessing as mp
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
CHECKPOINT_DIR = "checkpoint"
class AppState(Stateful):
"""This is a useful wrapper for checkpointing the Application State. Since this object is compliant
with the Stateful protocol, DCP will automatically call state_dict/load_stat_dict as needed in the
dcp.save/load APIs.
Note: We take advantage of this wrapper to hande calling distributed state dict methods on the model
and optimizer.
"""
def __init__(self, model, optimizer=None):
self.model = model
self.optimizer = optimizer
def state_dict(self):
# this line automatically manages FSDP FQN's, as well as sets the default state dict type to FSDP.SHARDED_STATE_DICT
model_state_dict, optimizer_state_dict = get_state_dict(self.model, self.optimizer)
return {
"model": model_state_dict,
"optim": optimizer_state_dict
}
def load_state_dict(self, state_dict):
# sets our state dicts on the model and optimizer, now that we've loaded
set_state_dict(
self.model,
self.optimizer,
model_state_dict=state_dict["model"],
optim_state_dict=state_dict["optim"]
)
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(16, 16)
self.relu = nn.ReLU()
self.net2 = nn.Linear(16, 8)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355 "
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
def run_fsdp_checkpoint_save_example(rank, world_size):
print(f"Running basic FSDP checkpoint saving example on rank {rank}.")
setup(rank, world_size)
# create a model and move it to GPU with id rank
model = ToyModel().to(rank)
model = FSDP(model)
loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
optimizer.zero_grad()
model(torch.rand(8, 16, device="cuda")).sum().backward()
optimizer.step()
state_dict = { "app": AppState(model, optimizer) }
dcp.save(state_dict, checkpoint_id=CHECKPOINT_DIR)
cleanup()
if __name__ == "__main__":
world_size = torch.cuda.device_count()
print(f"Running fsdp checkpoint example on {world_size} devices.")
mp.spawn(
run_fsdp_checkpoint_save_example,
args=(world_size,),
nprocs=world_size,
join=True,
)
请继续检查checkpoint目录。您应该会看到8个检查点文件,如下所示。
加载¶
保存后,让我们创建相同的FSDP封装模型,并将保存的状态字典从存储加载到模型中。您可以在相同的世界大小或不同的世界大小中加载。
请注意,在加载之前,您需要调用model.state_dict()并将其传递给DCP的load_state_dict() API。
这与torch.load()有根本的不同,因为torch.load()只需要检查点的路径即可加载。
我们需要在加载之前获取state_dict的原因是:
DCP 使用模型 state_dict 中预分配的存储从检查点目录加载。在加载过程中,传入的 state_dict 将会被就地更新。
DCP 在加载之前需要从模型中获取分片信息以支持重新分片。
import os
import torch
import torch.distributed as dist
import torch.distributed.checkpoint as dcp
from torch.distributed.checkpoint.stateful import Stateful
from torch.distributed.checkpoint.state_dict import get_state_dict, set_state_dict
import torch.multiprocessing as mp
import torch.nn as nn
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
CHECKPOINT_DIR = "checkpoint"
class AppState(Stateful):
"""This is a useful wrapper for checkpointing the Application State. Since this object is compliant
with the Stateful protocol, DCP will automatically call state_dict/load_stat_dict as needed in the
dcp.save/load APIs.
Note: We take advantage of this wrapper to hande calling distributed state dict methods on the model
and optimizer.
"""
def __init__(self, model, optimizer=None):
self.model = model
self.optimizer = optimizer
def state_dict(self):
# this line automatically manages FSDP FQN's, as well as sets the default state dict type to FSDP.SHARDED_STATE_DICT
model_state_dict, optimizer_state_dict = get_state_dict(self.model, self.optimizer)
return {
"model": model_state_dict,
"optim": optimizer_state_dict
}
def load_state_dict(self, state_dict):
# sets our state dicts on the model and optimizer, now that we've loaded
set_state_dict(
self.model,
self.optimizer,
model_state_dict=state_dict["model"],
optim_state_dict=state_dict["optim"]
)
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(16, 16)
self.relu = nn.ReLU()
self.net2 = nn.Linear(16, 8)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12355 "
# initialize the process group
dist.init_process_group("nccl", rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
def cleanup():
dist.destroy_process_group()
def run_fsdp_checkpoint_load_example(rank, world_size):
print(f"Running basic FSDP checkpoint loading example on rank {rank}.")
setup(rank, world_size)
# create a model and move it to GPU with id rank
model = ToyModel().to(rank)
model = FSDP(model)
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
state_dict = { "app": AppState(model, optimizer)}
dcp.load(
state_dict=state_dict,
checkpoint_id=CHECKPOINT_DIR,
)
cleanup()
if __name__ == "__main__":
world_size = torch.cuda.device_count()
print(f"Running fsdp checkpoint example on {world_size} devices.")
mp.spawn(
run_fsdp_checkpoint_load_example,
args=(world_size,),
nprocs=world_size,
join=True,
)
如果您希望将保存的检查点加载到非分布式设置中的非FSDP包装模型中,可能是为了推理,您也可以使用DCP来实现。
默认情况下,DCP以单程序多数据(SPMD)风格保存和加载分布式state_dict。然而,如果没有初始化进程组,DCP会推断意图是以“非分布式”风格保存或加载,这意味着完全在当前进程中完成。
注意
多程序多数据的分布式检查点支持仍在开发中。
import os
import torch
import torch.distributed.checkpoint as dcp
import torch.nn as nn
CHECKPOINT_DIR = "checkpoint"
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(16, 16)
self.relu = nn.ReLU()
self.net2 = nn.Linear(16, 8)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
def run_checkpoint_load_example():
# create the non FSDP-wrapped toy model
model = ToyModel()
state_dict = {
"model": model.state_dict(),
}
# since no progress group is initialized, DCP will disable any collectives.
dcp.load(
state_dict=state_dict,
checkpoint_id=CHECKPOINT_DIR,
)
model.load_state_dict(state_dict["model"])
if __name__ == "__main__":
print(f"Running basic DCP checkpoint loading example.")
run_checkpoint_load_example()
格式¶
尚未提到的一个缺点是,DCP以一种与使用torch.save生成的格式本质上不同的格式保存检查点。由于当用户希望与习惯于torch.save格式的用户共享模型时,或者通常只是希望为他们的应用程序增加格式灵活性时,这可能会成为一个问题。对于这种情况,我们在torch.distributed.checkpoint.format_utils中提供了format_utils模块。
为了方便用户,提供了一个命令行实用程序,其格式如下:
python -m torch.distributed.checkpoint.format_utils <mode> <checkpoint location> <location to write formats to>
在上面的命令中,mode 是 torch_to_dcp 或 dcp_to_torch 之一。
另外,还为希望直接转换检查点的用户提供了方法。
import os
import torch
import torch.distributed.checkpoint as DCP
from torch.distributed.checkpoint.format_utils import dcp_to_torch_save, torch_save_to_dcp
CHECKPOINT_DIR = "checkpoint"
TORCH_SAVE_CHECKPOINT_DIR = "torch_save_checkpoint.pth"
# convert dcp model to torch.save (assumes checkpoint was generated as above)
dcp_to_torch_save(CHECKPOINT_DIR, TORCH_SAVE_CHECKPOINT_DIR)
# converts the torch.save model back to DCP
dcp_to_torch_save(TORCH_SAVE_CHECKPOINT_DIR, f"{CHECKPOINT_DIR}_new")
结论¶
总之,我们已经学会了如何使用DCP的save()和load() API,以及它们与torch.save()和torch.load()的不同之处。
此外,我们还学会了如何使用get_state_dict()和set_state_dict()在状态字典生成和加载过程中自动管理并行性特定的FQN和默认值。
欲了解更多信息,请参阅以下内容:
