层归一化

在本教程中,您将编写一个高性能的层归一化内核,其运行速度比PyTorch实现更快。

在此过程中,您将了解:

  • 在Triton中实现反向传播。

  • 在Triton中实现并行归约。

动机

LayerNorm 算子最初在 [BA2016] 中提出,旨在提升序列模型(如Transformers)或小批量神经网络的性能。 它接收向量 \(x\) 作为输入,并输出相同形状的向量 \(y\)。 归一化过程通过减去均值并除以 \(x\) 的标准差来实现。 归一化后,会应用一个带有权重 \(w\) 和偏置 \(b\) 的可学习线性变换。 前向传播过程可以表示为:

\[y = \frac{ x - \text{E}[x] }{ \sqrt{\text{Var}(x) + \epsilon} } * w + b\]

其中\(\epsilon\)是添加到分母的一个小常数,用于数值稳定性。 让我们首先看一下前向传播的实现。

import torch

import triton
import triton.language as tl

try:
    # This is https://github.com/NVIDIA/apex, NOT the apex on PyPi, so it
    # should not be added to extras_require in setup.py.
    import apex
    HAS_APEX = True
except ModuleNotFoundError:
    HAS_APEX = False

DEVICE = triton.runtime.driver.active.get_active_torch_device()


@triton.jit
def _layer_norm_fwd_fused(
    X,  # pointer to the input
    Y,  # pointer to the output
    W,  # pointer to the weights
    B,  # pointer to the biases
    Mean,  # pointer to the mean
    Rstd,  # pointer to the 1/std
    stride,  # how much to increase the pointer when moving by 1 row
    N,  # number of columns in X
    eps,  # epsilon to avoid division by zero
    BLOCK_SIZE: tl.constexpr,
):
    # Map the program id to the row of X and Y it should compute.
    row = tl.program_id(0)
    Y += row * stride
    X += row * stride
    # Compute mean
    mean = 0
    _mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
    for off in range(0, N, BLOCK_SIZE):
        cols = off + tl.arange(0, BLOCK_SIZE)
        a = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
        _mean += a
    mean = tl.sum(_mean, axis=0) / N
    # Compute variance
    _var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
    for off in range(0, N, BLOCK_SIZE):
        cols = off + tl.arange(0, BLOCK_SIZE)
        x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
        x = tl.where(cols < N, x - mean, 0.)
        _var += x * x
    var = tl.sum(_var, axis=0) / N
    rstd = 1 / tl.sqrt(var + eps)
    # Write mean / rstd
    tl.store(Mean + row, mean)
    tl.store(Rstd + row, rstd)
    # Normalize and apply linear transformation
    for off in range(0, N, BLOCK_SIZE):
        cols = off + tl.arange(0, BLOCK_SIZE)
        mask = cols < N
        w = tl.load(W + cols, mask=mask)
        b = tl.load(B + cols, mask=mask)
        x = tl.load(X + cols, mask=mask, other=0.).to(tl.float32)
        x_hat = (x - mean) * rstd
        y = x_hat * w + b
        # Write output
        tl.store(Y + cols, y, mask=mask)

反向传播

层归一化算子的反向传播比前向传播稍微复杂一些。 设\(\hat{x}\)为线性变换前的归一化输入\(\frac{ x - \text{E}[x] }{ \sqrt{\text{Var}(x) + \epsilon} }\), 关于\(x\)的向量-雅可比积(VJP)\(\nabla_{x}\)由下式给出:

\[\nabla_{x} = \frac{1}{\sigma}\Big( \nabla_{y} \odot w - \underbrace{ \big( \frac{1}{N} \hat{x} \cdot (\nabla_{y} \odot w) \big) }_{c_1} \odot \hat{x} - \underbrace{ \frac{1}{N} \nabla_{y} \cdot w }_{c_2} \Big)\]

其中 \(\odot\) 表示逐元素乘法,\(\cdot\) 表示点积,\(\sigma\) 是标准差。 \(c_1\)\(c_2\) 是中间常量,用于提高后续实现的可读性。

对于权重 \(w\) 和偏置 \(b\),VJPs \(\nabla_{w}\)\(\nabla_{b}\) 更为直接:

\[\nabla_{w} = \nabla_{y} \odot \hat{x} \quad \text{and} \quad \nabla_{b} = \nabla_{y}\]

由于同一批次中的所有行都使用相同的权重\(w\)和偏置\(b\),它们的梯度需要进行求和。 为了高效执行这一步骤,我们采用并行归约策略:每个内核实例将部分\(\nabla_{w}\)\(\nabla_{b}\)跨特定行累加到\(\text{GROUP_SIZE_M}\)个独立缓冲区之一中。 这些缓冲区保留在L2缓存中,然后由另一个函数进一步归约以计算实际的\(\nabla_{w}\)\(\nabla_{b}\)

设输入行数 \(M = 4\)\(\text{GROUP_SIZE_M} = 2\), 以下是 \(\nabla_{w}\) 的并行归约策略示意图(为简洁起见省略了 \(\nabla_{b}\)):

../../_images/parallel_reduction.png

在阶段1中,X矩阵中相同颜色的行共享同一个缓冲区,因此使用锁来确保每次只有一个内核实例写入缓冲区。 在阶段2中,这些缓冲区会进一步归约以计算最终的\(\nabla_{w}\)\(\nabla_{b}\)。 在以下实现中,阶段1由函数_layer_norm_bwd_dx_fused实现,阶段2由函数_layer_norm_bwd_dwdb实现。

@triton.jit
def _layer_norm_bwd_dx_fused(DX,  # pointer to the input gradient
                             DY,  # pointer to the output gradient
                             DW,  # pointer to the partial sum of weights gradient
                             DB,  # pointer to the partial sum of biases gradient
                             X,  # pointer to the input
                             W,  # pointer to the weights
                             Mean,  # pointer to the mean
                             Rstd,  # pointer to the 1/std
                             Lock,  # pointer to the lock
                             stride,  # how much to increase the pointer when moving by 1 row
                             N,  # number of columns in X
                             GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
    # Map the program id to the elements of X, DX, and DY it should compute.
    row = tl.program_id(0)
    cols = tl.arange(0, BLOCK_SIZE_N)
    mask = cols < N
    X += row * stride
    DY += row * stride
    DX += row * stride
    # Offset locks and weights/biases gradient pointer for parallel reduction
    lock_id = row % GROUP_SIZE_M
    Lock += lock_id
    Count = Lock + GROUP_SIZE_M
    DW = DW + lock_id * N + cols
    DB = DB + lock_id * N + cols
    # Load data to SRAM
    x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
    dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
    w = tl.load(W + cols, mask=mask).to(tl.float32)
    mean = tl.load(Mean + row)
    rstd = tl.load(Rstd + row)
    # Compute dx
    xhat = (x - mean) * rstd
    wdy = w * dy
    xhat = tl.where(mask, xhat, 0.)
    wdy = tl.where(mask, wdy, 0.)
    c1 = tl.sum(xhat * wdy, axis=0) / N
    c2 = tl.sum(wdy, axis=0) / N
    dx = (wdy - (xhat * c1 + c2)) * rstd
    # Write dx
    tl.store(DX + cols, dx, mask=mask)
    # Accumulate partial sums for dw/db
    partial_dw = (dy * xhat).to(w.dtype)
    partial_db = (dy).to(w.dtype)
    while tl.atomic_cas(Lock, 0, 1) == 1:
        pass
    count = tl.load(Count)
    # First store doesn't accumulate
    if count == 0:
        tl.atomic_xchg(Count, 1)
    else:
        partial_dw += tl.load(DW, mask=mask)
        partial_db += tl.load(DB, mask=mask)
    tl.store(DW, partial_dw, mask=mask)
    tl.store(DB, partial_db, mask=mask)

    # need a barrier to ensure all threads finished before
    # releasing the lock
    tl.debug_barrier()

    # Release the lock
    tl.atomic_xchg(Lock, 0)


@triton.jit
def _layer_norm_bwd_dwdb(DW,  # pointer to the partial sum of weights gradient
                         DB,  # pointer to the partial sum of biases gradient
                         FINAL_DW,  # pointer to the weights gradient
                         FINAL_DB,  # pointer to the biases gradient
                         M,  # GROUP_SIZE_M
                         N,  # number of columns
                         BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr):
    # Map the program id to the elements of DW and DB it should compute.
    pid = tl.program_id(0)
    cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    db = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    # Iterate through the rows of DW and DB to sum the partial sums.
    for i in range(0, M, BLOCK_SIZE_M):
        rows = i + tl.arange(0, BLOCK_SIZE_M)
        mask = (rows[:, None] < M) & (cols[None, :] < N)
        offs = rows[:, None] * N + cols[None, :]
        dw += tl.load(DW + offs, mask=mask, other=0.)
        db += tl.load(DB + offs, mask=mask, other=0.)
    # Write the final sum to the output.
    sum_dw = tl.sum(dw, axis=0)
    sum_db = tl.sum(db, axis=0)
    tl.store(FINAL_DW + cols, sum_dw, mask=cols < N)
    tl.store(FINAL_DB + cols, sum_db, mask=cols < N)

基准测试

我们现在可以将我们的内核性能与PyTorch进行比较。这里我们重点关注每个特征小于64KB的输入。具体来说,可以设置'mode': 'backward'来对反向传播进行基准测试。

class LayerNorm(torch.autograd.Function):

    @staticmethod
    def forward(ctx, x, normalized_shape, weight, bias, eps):
        # allocate output
        y = torch.empty_like(x)
        # reshape input data into 2D tensor
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        mean = torch.empty((M, ), dtype=torch.float32, device=x.device)
        rstd = torch.empty((M, ), dtype=torch.float32, device=x.device)
        # Less than 64KB per feature: enqueue fused kernel
        MAX_FUSED_SIZE = 65536 // x.element_size()
        BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
        if N > BLOCK_SIZE:
            raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
        # heuristics for number of warps
        num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
        # enqueue kernel
        _layer_norm_fwd_fused[(M, )](  #
            x_arg, y, weight, bias, mean, rstd,  #
            x_arg.stride(0), N, eps,  #
            BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps, num_ctas=1)
        ctx.save_for_backward(x, weight, bias, mean, rstd)
        ctx.BLOCK_SIZE = BLOCK_SIZE
        ctx.num_warps = num_warps
        ctx.eps = eps
        return y

    @staticmethod
    def backward(ctx, dy):
        x, w, b, m, v = ctx.saved_tensors
        # heuristics for amount of parallel reduction stream for DW/DB
        N = w.shape[0]
        GROUP_SIZE_M = 64
        if N <= 8192: GROUP_SIZE_M = 96
        if N <= 4096: GROUP_SIZE_M = 128
        if N <= 1024: GROUP_SIZE_M = 256
        # allocate output
        locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device=w.device)
        _dw = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device)
        _db = torch.zeros((GROUP_SIZE_M, N), dtype=x.dtype, device=w.device)
        dw = torch.empty((N, ), dtype=w.dtype, device=w.device)
        db = torch.empty((N, ), dtype=w.dtype, device=w.device)
        dx = torch.empty_like(dy)
        # enqueue kernel using forward pass heuristics
        # also compute partial sums for DW and DB
        x_arg = x.reshape(-1, x.shape[-1])
        M, N = x_arg.shape
        _layer_norm_bwd_dx_fused[(M, )](  #
            dx, dy, _dw, _db, x, w, m, v, locks,  #
            x_arg.stride(0), N,  #
            BLOCK_SIZE_N=ctx.BLOCK_SIZE,  #
            GROUP_SIZE_M=GROUP_SIZE_M,  #
            num_warps=ctx.num_warps)
        grid = lambda meta: (triton.cdiv(N, meta['BLOCK_SIZE_N']), )
        # accumulate partial sums in separate kernel
        _layer_norm_bwd_dwdb[grid](
            _dw, _db, dw, db, min(GROUP_SIZE_M, M), N,  #
            BLOCK_SIZE_M=32,  #
            BLOCK_SIZE_N=128, num_ctas=1)
        return dx, None, dw, db, None


layer_norm = LayerNorm.apply


def test_layer_norm(M, N, dtype, eps=1e-5, device=DEVICE):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device)
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    # forward pass
    y_tri = layer_norm(x, w_shape, weight, bias, eps)
    y_ref = torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps).to(dtype)
    # backward pass (triton)
    y_tri.backward(dy, retain_graph=True)
    dx_tri, dw_tri, db_tri = [_.grad.clone() for _ in [x, weight, bias]]
    x.grad, weight.grad, bias.grad = None, None, None
    # backward pass (torch)
    y_ref.backward(dy, retain_graph=True)
    dx_ref, dw_ref, db_ref = [_.grad.clone() for _ in [x, weight, bias]]
    # compare
    assert torch.allclose(y_tri, y_ref, atol=1e-2, rtol=0)
    assert torch.allclose(dx_tri, dx_ref, atol=1e-2, rtol=0)
    assert torch.allclose(db_tri, db_ref, atol=1e-2, rtol=0)
    assert torch.allclose(dw_tri, dw_ref, atol=1e-2, rtol=0)


@triton.testing.perf_report(
    triton.testing.Benchmark(
        x_names=['N'],
        x_vals=[512 * i for i in range(2, 32)],
        line_arg='provider',
        line_vals=['triton', 'torch'] + (['apex'] if HAS_APEX else []),
        line_names=['Triton', 'Torch'] + (['Apex'] if HAS_APEX else []),
        styles=[('blue', '-'), ('green', '-'), ('orange', '-')],
        ylabel='GB/s',
        plot_name='layer-norm-backward',
        args={'M': 4096, 'dtype': torch.float16, 'mode': 'backward'},
    ))
def bench_layer_norm(M, N, dtype, provider, mode='backward', eps=1e-5, device=DEVICE):
    # create data
    x_shape = (M, N)
    w_shape = (x_shape[-1], )
    weight = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True)
    bias = torch.rand(w_shape, dtype=dtype, device=device, requires_grad=True)
    x = -2.3 + 0.5 * torch.randn(x_shape, dtype=dtype, device=device)
    dy = .1 * torch.randn_like(x)
    x.requires_grad_(True)
    quantiles = [0.5, 0.2, 0.8]

    def y_fwd():

        if provider == "triton":
            return layer_norm(x, w_shape, weight, bias, eps)  # noqa: F811, E704

        if provider == "torch":
            return torch.nn.functional.layer_norm(x, w_shape, weight, bias, eps)  # noqa: F811, E704

        if provider == "apex":
            apex_layer_norm = (apex.normalization.FusedLayerNorm(w_shape).to(x.device).to(x.dtype))
            return apex_layer_norm(x)  # noqa: F811, E704

    # forward pass
    if mode == 'forward':
        gbps = lambda ms: 2 * x.numel() * x.element_size() * 1e-9 / (ms * 1e-3)
        ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=500)
    # backward pass
    if mode == 'backward':
        y = y_fwd()
        gbps = lambda ms: 3 * x.numel() * x.element_size() * 1e-9 / (ms * 1e-3)  # noqa: F811, E704
        ms, min_ms, max_ms = triton.testing.do_bench(lambda: y.backward(dy, retain_graph=True), quantiles=quantiles,
                                                     grad_to_none=[x], rep=500)
    return gbps(ms), gbps(max_ms), gbps(min_ms)


test_layer_norm(1151, 8192, torch.float16)
bench_layer_norm.run(save_path='.', print_data=True)
05 layer norm
layer-norm-backward:
          N      Triton       Torch
0    1024.0  107.789472  378.092307
1    1536.0  159.584417  444.144584
2    2048.0  212.779222  517.389457
3    2560.0  263.690988  574.205608
4    3072.0  374.253805  614.400016
5    3584.0  436.629439  547.872604
6    4096.0  493.989945  561.737163
7    4608.0  521.660380  567.138460
8    5120.0  563.669722  568.888888
9    5632.0  595.453753  563.200014
10   6144.0  616.970709  562.809189
11   6656.0  674.025316  566.468098
12   7168.0  705.049194  540.981122
13   7680.0  711.660251  548.571433
14   8192.0  733.611931  549.184373
15   8704.0  665.273876  561.548373
16   9216.0  697.741329  567.138460
17   9728.0  722.823562  569.443892
18  10240.0  729.258150  563.669722
19  10752.0  774.918911  553.751076
20  11264.0  792.774179  559.701851
21  11776.0  782.891938  567.518063
22  12288.0  805.770507  571.534916
23  12800.0  823.592520  577.443635
24  13312.0  872.918050  578.782596
25  13824.0  880.042465  578.006963
26  14336.0  900.691103  568.700819
27  14848.0  911.386169  569.252402
28  15360.0  914.739425  578.712698
29  15872.0  906.971436  580.682936

参考文献

[BA2016]

Jimmy Lei Ba 和 Jamie Ryan Kiros 以及 Geoffrey E. Hinton,《层归一化》,Arxiv 2016

脚本总运行时间: (0 分钟 28.959 秒)

Gallery generated by Sphinx-Gallery