注意
Go to the end 以下载完整的示例代码。
使用欠采样的多类分类#
一些平衡方法允许平衡具有多个类别的数据集。 我们提供了一个示例来说明这些方法的使用,这些方法与二元情况没有区别。
Training target statistics: Counter({1: 38, 2: 38, 0: 17})
Testing target statistics: Counter({1: 12, 2: 12, 0: 8})
pre rec spe f1 geo iba sup
0 1.00 1.00 1.00 1.00 1.00 1.00 8
1 0.88 0.58 0.95 0.70 0.74 0.53 12
2 0.69 0.92 0.75 0.79 0.83 0.70 12
avg / total 0.84 0.81 0.89 0.81 0.84 0.71 32
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# License: MIT
from collections import Counter
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from imblearn.datasets import make_imbalance
from imblearn.metrics import classification_report_imbalanced
from imblearn.pipeline import make_pipeline
from imblearn.under_sampling import NearMiss
print(__doc__)
RANDOM_STATE = 42
# Create a folder to fetch the dataset
iris = load_iris()
X, y = make_imbalance(
iris.data,
iris.target,
sampling_strategy={0: 25, 1: 50, 2: 50},
random_state=RANDOM_STATE,
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=RANDOM_STATE)
print(f"Training target statistics: {Counter(y_train)}")
print(f"Testing target statistics: {Counter(y_test)}")
# Create a pipeline
pipeline = make_pipeline(NearMiss(version=2), StandardScaler(), LogisticRegression())
pipeline.fit(X_train, y_train)
# Classify and report the results
print(classification_report_imbalanced(y_test, pipeline.predict(X_test)))
脚本的总运行时间: (0 分钟 0.231 秒)
预计内存使用量: 199 MB