跳转到内容

使用LlamaIndex + DuckDB的SQL查询引擎

本指南展示了使用DuckDB的核心LlamaIndex SQL功能。

我们介绍一些核心的LlamaIndex数据结构,包括NLSQLTableQueryEngineSQLTableRetrieverQueryEngine

NOTE: Any Text-to-SQL application should be aware that executing arbitrary SQL queries can be a security risk. It is recommended to take precautions as needed, such as using restricted roles, read-only databases, sandboxing, etc.

如果您在 Colab 上打开这个笔记本,您可能需要安装 LlamaIndex 🦙。

%pip install llama-index-readers-wikipedia
!pip install llama-index
!pip install duckdb duckdb-engine
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SQLDatabase, SimpleDirectoryReader, Document
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core.indices.struct_store import SQLTableRetrieverQueryEngine
from IPython.display import Markdown, display

使用我们的 NLSQLTableQueryEngine 实现基础文本转SQL

Section titled “Basic Text-to-SQL with our NLSQLTableQueryEngine”

在这个初始示例中,我们将演示如何使用一些测试数据点填充SQL数据库,并通过我们的文本转SQL功能进行查询。

我们使用流行的SQL数据库工具包sqlalchemy连接至DuckDB,并创建一个空的city_stats数据表。随后我们使用一些测试数据填充该表。

from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
engine = create_engine("duckdb:///:memory:")
# uncomment to make this work with MotherDuck
# engine = create_engine("duckdb:///md:llama-index")
metadata_obj = MetaData()
# create city SQL table
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
# print tables
metadata_obj.tables.keys()
dict_keys(['city_stats'])

我们向 city_stats 表中引入一些测试数据

from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{
"city_name": "Chicago",
"population": 2679000,
"country": "United States",
},
{"city_name": "Seoul", "population": 9776000, "country": "South Korea"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
[('Toronto', 2930000, 'Canada'), ('Tokyo', 13960000, 'Japan'), ('Chicago', 2679000, 'United States'), ('Seoul', 9776000, 'South Korea')]

我们首先定义我们的SQLDatabase抽象(一个围绕SQLAlchemy的轻量级封装)。

from llama_index.core import SQLDatabase
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
/Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages/duckdb_engine/__init__.py:162: DuckDBEngineWarning: duckdb-engine doesn't yet support reflection on indices
warnings.warn(

这里我们展示 NLSQLTableQueryEngine 的功能,它能够实现文本到SQL的转换。

  1. 我们构建一个 NLSQLTableQueryEngine 并传入我们的 SQL 数据库对象。
  2. 我们对查询引擎运行查询。
query_engine = NLSQLTableQueryEngine(sql_database)
response = query_engine.query("Which city has the highest population?")
INFO:llama_index.indices.struct_store.sql_query:> Table desc str: Table 'city_stats' has columns: city_name (VARCHAR), population (INTEGER), country (VARCHAR) and foreign keys: .
> Table desc str: Table 'city_stats' has columns: city_name (VARCHAR), population (INTEGER), country (VARCHAR) and foreign keys: .
/Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages/langchain/sql_database.py:238: UserWarning: This method is deprecated - please use `get_usable_table_names`.
warnings.warn(
INFO:llama_index.token_counter.token_counter:> [query] Total LLM token usage: 332 tokens
> [query] Total LLM token usage: 332 tokens
INFO:llama_index.token_counter.token_counter:> [query] Total embedding token usage: 0 tokens
> [query] Total embedding token usage: 0 tokens
str(response)
' Tokyo has the highest population, with 13,960,000 people.'
response.metadata
{'result': [('Tokyo', 13960000)],
'sql_query': 'SELECT city_name, population \nFROM city_stats \nORDER BY population DESC \nLIMIT 1;'}

使用我们的 SQLTableRetrieverQueryEngine 实现高级文本到SQL转换

Section titled “Advanced Text-to-SQL with our SQLTableRetrieverQueryEngine”

在本指南中,我们处理这样一种场景:您的数据库中有大量表格,将所有表结构放入提示中可能会导致文本转SQL提示溢出。

我们首先使用我们的 ObjectIndex 对模式进行索引,然后在其基础上使用我们的 SQLTableRetrieverQueryEngine 抽象层。

engine = create_engine("duckdb:///:memory:")
# uncomment to make this work with MotherDuck
# engine = create_engine("duckdb:///md:llama-index")
metadata_obj = MetaData()
# create city SQL table
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
all_table_names = ["city_stats"]
# create a ton of dummy tables
n = 100
for i in range(n):
tmp_table_name = f"tmp_table_{i}"
tmp_table = Table(
tmp_table_name,
metadata_obj,
Column(f"tmp_field_{i}_1", String(16), primary_key=True),
Column(f"tmp_field_{i}_2", Integer),
Column(f"tmp_field_{i}_3", String(16), nullable=False),
)
all_table_names.append(f"tmp_table_{i}")
metadata_obj.create_all(engine)
# insert dummy data
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{
"city_name": "Chicago",
"population": 2679000,
"country": "United States",
},
{"city_name": "Seoul", "population": 9776000, "country": "South Korea"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
from llama_index.core.indices.struct_store import SQLTableRetrieverQueryEngine
from llama_index.core.objects import (
SQLTableNodeMapping,
ObjectIndex,
SQLTableSchema,
)
from llama_index.core import VectorStoreIndex
table_node_mapping = SQLTableNodeMapping(sql_database)
table_schema_objs = []
for table_name in all_table_names:
table_schema_objs.append(SQLTableSchema(table_name=table_name))
obj_index = ObjectIndex.from_objects(
table_schema_objs,
table_node_mapping,
VectorStoreIndex,
)
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens
> [build_index_from_nodes] Total LLM token usage: 0 tokens
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 6343 tokens
> [build_index_from_nodes] Total embedding token usage: 6343 tokens

使用 SQLTableRetrieverQueryEngine 查询索引

Section titled “Query Index with SQLTableRetrieverQueryEngine”
query_engine = SQLTableRetrieverQueryEngine(
sql_database,
obj_index.as_retriever(similarity_top_k=1),
)
response = query_engine.query("Which city has the highest population?")
INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens
> [retrieve] Total LLM token usage: 0 tokens
INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 7 tokens
> [retrieve] Total embedding token usage: 7 tokens
INFO:llama_index.indices.struct_store.sql_query:> Table desc str: Table 'city_stats' has columns: city_name (VARCHAR), population (INTEGER), country (VARCHAR) and foreign keys: .
> Table desc str: Table 'city_stats' has columns: city_name (VARCHAR), population (INTEGER), country (VARCHAR) and foreign keys: .
INFO:llama_index.token_counter.token_counter:> [query] Total LLM token usage: 337 tokens
> [query] Total LLM token usage: 337 tokens
INFO:llama_index.token_counter.token_counter:> [query] Total embedding token usage: 0 tokens
> [query] Total embedding token usage: 0 tokens
response
Response(response=' The city with the highest population is Tokyo, with a population of 13,960,000.', source_nodes=[], metadata={'result': [('Tokyo', 13960000)], 'sql_query': 'SELECT city_name, population \nFROM city_stats \nORDER BY population DESC \nLIMIT 1;'})