跳转到内容

节点解析器使用模式

节点解析器是一种简单的抽象,它接收文档列表并将其分块为Node对象,使得每个节点成为父文档的特定块。当文档被分解为节点时,其所有属性都会继承给子节点(例如metadata、文本和元数据模板等)。您可以在此处阅读更多关于NodeDocument属性的信息。

节点解析器可以单独使用:

from llama_index.core import Document
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceSplitter(chunk_size=1024, chunk_overlap=20)
nodes = node_parser.get_nodes_from_documents(
[Document(text="long text")], show_progress=False
)

节点解析器可以包含在任何具有摄取管道的转换集中。

from llama_index.core import SimpleDirectoryReader
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import TokenTextSplitter
documents = SimpleDirectoryReader("./data").load_data()
pipeline = IngestionPipeline(transformations=[TokenTextSplitter(), ...])
nodes = pipeline.run(documents=documents)

或者在 transformations 中设置,或设为全局配置,以便在使用 .from_documents() 构建索引时自动应用:

from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.core.node_parser import SentenceSplitter
documents = SimpleDirectoryReader("./data").load_data()
# global
from llama_index.core import Settings
Settings.text_splitter = SentenceSplitter(chunk_size=1024, chunk_overlap=20)
# per-index
index = VectorStoreIndex.from_documents(
documents,
transformations=[SentenceSplitter(chunk_size=1024, chunk_overlap=20)],
)

查看完整的模块指南