`ObjectIndex` 类
ObjectIndex 类允许对任意 Python 对象进行索引。因此,它非常灵活,适用于广泛的用例。例如:
要构建一个ObjectIndex,我们需要一个索引以及另一个抽象概念,即ObjectNodeMapping。顾名思义,这种映射提供了在节点与关联对象之间相互转换的方法。另外,还存在一个from_objects()类方法,可以方便地从一组对象构建ObjectIndex。
在本笔记本中,我们将快速介绍如何使用 SimpleObjectNodeMapping 构建一个 ObjectIndex。
from llama_index.core import Settings
Settings.embed_model = "local"from llama_index.core import VectorStoreIndexfrom llama_index.core.objects import ObjectIndex, SimpleObjectNodeMapping
# some really arbitrary objectsobj1 = {"input": "Hey, how's it going"}obj2 = ["a", "b", "c", "d"]obj3 = "llamaindex is an awesome library!"arbitrary_objects = [obj1, obj2, obj3]
# (optional) object-node mappingobj_node_mapping = SimpleObjectNodeMapping.from_objects(arbitrary_objects)nodes = obj_node_mapping.to_nodes(arbitrary_objects)
# object indexobject_index = ObjectIndex( index=VectorStoreIndex(nodes=nodes), object_node_mapping=obj_node_mapping,)
# object index from_objects (default index_cls=VectorStoreIndex)object_index = ObjectIndex.from_objects( arbitrary_objects, index_cls=VectorStoreIndex)有了object_index,我们可以将其用作检索器,对索引对象进行检索。
object_retriever = object_index.as_retriever(similarity_top_k=1)object_retriever.retrieve("llamaindex")['llamaindex is an awesome library!']我们还可以向对象索引检索器添加节点后处理器,以便轻松实现诸如重排器等更多功能。
%pip install llama-index-postprocessor-colbert-rerankfrom llama_index.postprocessor.colbert_rerank import ColbertRerank
retriever = object_index.as_retriever( similarity_top_k=2, node_postprocessors=[ColbertRerank(top_n=1)])retriever.retrieve("a random list object")['llamaindex is an awesome library!']使用存储集成(例如 Chroma)
Section titled “Using a Storage Integration (i.e. Chroma)”对象索引支持与LlamaIndex中任何现有存储后端的集成。
以下部分将逐步介绍如何使用 Chroma 作为示例进行设置。
%pip install llama-index-vector-stores-chromafrom llama_index.core import StorageContext, VectorStoreIndexfrom llama_index.vector_stores.chroma import ChromaVectorStoreimport chromadb
db = chromadb.PersistentClient(path="./chroma_db")chroma_collection = db.get_or_create_collection("quickstart2")vector_store = ChromaVectorStore(chroma_collection=chroma_collection)storage_context = StorageContext.from_defaults(vector_store=vector_store)
object_index = ObjectIndex.from_objects( arbitrary_objects, index_cls=VectorStoreIndex, storage_context=storage_context,)---------------------------------------------------------------------------
FileNotFoundError Traceback (most recent call last)
Cell In[31], line 5 2 from llama_index.vector_stores.chroma import ChromaVectorStore 3 import chromadb----> 5 db = chromadb.PersistentClient(path="./chroma_db2") 6 chroma_collection = db.get_or_create_collection("quickstart2") 7 vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/__init__.py:146, in PersistentClient(path, settings, tenant, database) 143 tenant = str(tenant) 144 database = str(database)--> 146 return ClientCreator(tenant=tenant, database=database, settings=settings)
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/api/client.py:139, in Client.__init__(self, tenant, database, settings) 133 def __init__( 134 self, 135 tenant: str = DEFAULT_TENANT, 136 database: str = DEFAULT_DATABASE, 137 settings: Settings = Settings(), 138 ) -> None:--> 139 super().__init__(settings=settings) 140 self.tenant = tenant 141 self.database = database
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/api/client.py:43, in SharedSystemClient.__init__(self, settings) 38 def __init__( 39 self, 40 settings: Settings = Settings(), 41 ) -> None: 42 self._identifier = SharedSystemClient._get_identifier_from_settings(settings)---> 43 SharedSystemClient._create_system_if_not_exists(self._identifier, settings)
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/api/client.py:54, in SharedSystemClient._create_system_if_not_exists(cls, identifier, settings) 51 cls._identifer_to_system[identifier] = new_system 53 new_system.instance(ProductTelemetryClient)---> 54 new_system.instance(ServerAPI) 56 new_system.start() 57 else:
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/config.py:382, in System.instance(self, type) 379 type = get_class(fqn, type) 381 if type not in self._instances:--> 382 impl = type(self) 383 self._instances[type] = impl 384 if self._running:
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/api/segment.py:102, in SegmentAPI.__init__(self, system) 100 super().__init__(system) 101 self._settings = system.settings--> 102 self._sysdb = self.require(SysDB) 103 self._manager = self.require(SegmentManager) 104 self._quota = self.require(QuotaEnforcer)
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/config.py:281, in Component.require(self, type) 278 def require(self, type: Type[T]) -> T: 279 """Get a Component instance of the given type, and register as a dependency of 280 that instance."""--> 281 inst = self._system.instance(type) 282 self._dependencies.add(inst) 283 return inst
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/config.py:382, in System.instance(self, type) 379 type = get_class(fqn, type) 381 if type not in self._instances:--> 382 impl = type(self) 383 self._instances[type] = impl 384 if self._running:
File ~/giant_change/llama_index/venv/lib/python3.10/site-packages/chromadb/db/impl/sqlite.py:88, in SqliteDB.__init__(self, system) 84 self._db_file = ( 85 self._settings.require("persist_directory") + "/chroma.sqlite3" 86 ) 87 if not os.path.exists(self._db_file):---> 88 os.makedirs(os.path.dirname(self._db_file), exist_ok=True) 89 self._conn_pool = PerThreadPool(self._db_file) 90 self._tx_stack = local()
File ~/miniforge3/lib/python3.10/os.py:225, in makedirs(name, mode, exist_ok) 223 return 224 try:--> 225 mkdir(name, mode) 226 except OSError: 227 # Cannot rely on checking for EEXIST, since the operating system 228 # could give priority to other errors like EACCES or EROFS 229 if not exist_ok or not path.isdir(name):
FileNotFoundError: [Errno 2] No such file or directory: './chroma_db2'object_retriever = object_index.as_retriever(similarity_top_k=1)object_retriever.retrieve("llamaindex")['llamaindex is an awesome library!']现在,让我们“重新加载”索引
db = chromadb.PersistentClient(path="./chroma_db")chroma_collection = db.get_or_create_collection("quickstart")vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
object_index = ObjectIndex.from_objects_and_index(arbitrary_objects, index)object_retriever = object_index.as_retriever(similarity_top_k=1)object_retriever.retrieve("llamaindex")['llamaindex is an awesome library!']请注意,当我们重新加载索引时,仍然需要传递对象,因为这些对象并未保存在实际的索引/向量数据库中。
对于需要完全控制对象如何映射到节点的特殊场景,您也可以提供 to_node_fn() 和 from_node_fn() 钩子函数。
这在您转换特殊对象时非常有用,或者当您希望在运行时动态创建对象而不是将其保留在内存中时。
下面展示一个小示例。
from llama_index.core.schema import TextNode
my_objects = { str(hash(str(obj))): obj for i, obj in enumerate(arbitrary_objects)}
def from_node_fn(node): return my_objects[node.id]
def to_node_fn(obj): return TextNode(id=str(hash(str(obj))), text=str(obj))
object_index = ObjectIndex.from_objects( arbitrary_objects, index_cls=VectorStoreIndex, from_node_fn=from_node_fn, to_node_fn=to_node_fn,)
object_retriever = object_index.as_retriever(similarity_top_k=1)
object_retriever.retrieve("llamaindex")['llamaindex is an awesome library!']将 ObjectIndex 持久化到磁盘对象
Section titled “Persisting ObjectIndex to Disk with Objects”当涉及到持久化 ObjectIndex 时,我们需要同时处理索引以及对象节点映射。持久化索引相对简单,可以通过常规方式处理(例如,参见本指南)。然而,在持久化 ObjectNodeMapping 时情况则有所不同。由于我们使用 ObjectIndex 对任意Python对象进行索引,可能会出现(或许比我们期望的更频繁)这些任意对象不可序列化的情况。在这些情况下,您可以持久化索引,但用户需要维护一种重建 ObjectNodeMapping 的方法,以便能够重建 ObjectIndex。为方便起见,ObjectIndex 上提供了 persist 和 from_persist_dir 方法,它们将分别尝试持久化和加载先前保存的 ObjectIndex。
# persist to disk (no path provided will persist to the default path ./storage)object_index.persist()# re-loading (no path provided will attempt to load from the default path ./storage)reloaded_object_index = ObjectIndex.from_persist_dir()reloaded_object_index._object_node_mapping.obj_node_mapping{7981070310142320670: {'input': "Hey, how's it going"}, -5984737625581842527: ['a', 'b', 'c', 'd'], -8305186196625446821: 'llamaindex is an awesome library!'}object_index._object_node_mapping.obj_node_mapping{7981070310142320670: {'input': "Hey, how's it going"}, -5984737625581842527: ['a', 'b', 'c', 'd'], -8305186196625446821: 'llamaindex is an awesome library!'}from llama_index.core.tools import FunctionToolfrom llama_index.core import SummaryIndexfrom llama_index.core.objects import SimpleToolNodeMapping
def add(a: int, b: int) -> int: """Add two integers and returns the result integer""" return a + b
def multiply(a: int, b: int) -> int: """Multiple two integers and returns the result integer""" return a * b
multiply_tool = FunctionTool.from_defaults(fn=multiply)add_tool = FunctionTool.from_defaults(fn=add)
object_mapping = SimpleToolNodeMapping.from_objects([add_tool, multiply_tool])object_index = ObjectIndex.from_objects( [add_tool, multiply_tool], object_mapping)# trying to persist the object_mapping directly will raise an errorobject_mapping.persist()---------------------------------------------------------------------------
NotImplementedError Traceback (most recent call last)
Cell In[4], line 2 1 # trying to persist the object_mapping directly will raise an error----> 2 object_mapping.persist()
File ~/Projects/llama_index/llama_index/objects/tool_node_mapping.py:47, in BaseToolNodeMapping.persist(self, persist_dir, obj_node_mapping_fname) 43 def persist( 44 self, persist_dir: str = ..., obj_node_mapping_fname: str = ... 45 ) -> None: 46 """Persist objs."""---> 47 raise NotImplementedError("Subclasses should implement this!")
NotImplementedError: Subclasses should implement this!# try to persist the object index here will throw a Warning to the userobject_index.persist()/var/folders/0g/wd11bmkd791fz7hvgy1kqyp00000gn/T/ipykernel_77363/46708458.py:2: UserWarning: Unable to persist ObjectNodeMapping. You will need to reconstruct the same object node mapping to build this ObjectIndex object_index.persist()在这种情况下,只有索引被持久化。 为了重新构建如上所述的 ObjectIndex,我们需要手动重新构建 ObjectNodeMapping 并将其提供给 ObjectIndex.from_persist_dir 方法。
reloaded_object_index = ObjectIndex.from_persist_dir( object_node_mapping=object_mapping # without this, an error will be thrown)