跳转到内容

函数调用智能体的工作流程

本笔记本将逐步指导如何设置一个 Workflow 来从头构建一个函数调用智能体。

函数调用智能体通过使用支持其API中工具/函数的大型语言模型(OpenAI、Ollama、Anthropic等)来调用函数和使用工具。

我们的工作流程将具备带记忆的状态管理能力,并能够调用大语言模型来选择工具并处理传入的用户消息。

!pip install -U llama-index
import os
os.environ["OPENAI_API_KEY"] = "sk-proj-..."

设置追踪功能以可视化工作流中的每个步骤。

Since workflows are async first, this all runs fine in a notebook. If you were running in your own code, you would want to use asyncio.run() to start an async event loop if one isn’t already running.

async def main():
<async code>
if __name__ == "__main__":
import asyncio
asyncio.run(main())

一个智能体包含多个步骤

  1. 处理最新的用户传入消息,包括添加到记忆并获取最新的聊天历史
  2. 使用工具 + 聊天记录调用LLM
  3. 解析出工具调用(如果有的话)
  4. 如果存在工具调用,则调用它们,并循环直至不再有调用
  5. 当没有工具调用时,返回LLM响应

为了处理这些步骤,我们需要定义几个事件:

  1. 处理新消息并准备聊天历史记录的事件
  2. 用于处理流式响应的事件
  3. 触发工具调用的事件
  4. 一个用于处理工具调用结果的事件

其他步骤将使用内置的 StartEventStopEvent 事件。

from llama_index.core.llms import ChatMessage
from llama_index.core.tools import ToolSelection, ToolOutput
from llama_index.core.workflow import Event
class InputEvent(Event):
input: list[ChatMessage]
class StreamEvent(Event):
delta: str
class ToolCallEvent(Event):
tool_calls: list[ToolSelection]
class FunctionOutputEvent(Event):
output: ToolOutput

定义好事件后,我们可以构建工作流和步骤。

请注意,工作流会自动使用类型注解进行自我验证,因此我们步骤中的类型注解非常有用!

from typing import Any, List
from llama_index.core.llms.function_calling import FunctionCallingLLM
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.tools.types import BaseTool
from llama_index.core.workflow import (
Context,
Workflow,
StartEvent,
StopEvent,
step,
)
from llama_index.llms.openai import OpenAI
class FuncationCallingAgent(Workflow):
def __init__(
self,
*args: Any,
llm: FunctionCallingLLM | None = None,
tools: List[BaseTool] | None = None,
**kwargs: Any,
) -> None:
super().__init__(*args, **kwargs)
self.tools = tools or []
self.llm = llm or OpenAI()
assert self.llm.metadata.is_function_calling_model
@step
async def prepare_chat_history(
self, ctx: Context, ev: StartEvent
) -> InputEvent:
# clear sources
await ctx.store.set("sources", [])
# check if memory is setup
memory = await ctx.store.get("memory", default=None)
if not memory:
memory = ChatMemoryBuffer.from_defaults(llm=self.llm)
# get user input
user_input = ev.input
user_msg = ChatMessage(role="user", content=user_input)
memory.put(user_msg)
# get chat history
chat_history = memory.get()
# update context
await ctx.store.set("memory", memory)
return InputEvent(input=chat_history)
@step
async def handle_llm_input(
self, ctx: Context, ev: InputEvent
) -> ToolCallEvent | StopEvent:
chat_history = ev.input
# stream the response
response_stream = await self.llm.astream_chat_with_tools(
self.tools, chat_history=chat_history
)
async for response in response_stream:
ctx.write_event_to_stream(StreamEvent(delta=response.delta or ""))
# save the final response, which should have all content
memory = await ctx.store.get("memory")
memory.put(response.message)
await ctx.store.set("memory", memory)
# get tool calls
tool_calls = self.llm.get_tool_calls_from_response(
response, error_on_no_tool_call=False
)
if not tool_calls:
sources = await ctx.store.get("sources", default=[])
return StopEvent(
result={"response": response, "sources": [*sources]}
)
else:
return ToolCallEvent(tool_calls=tool_calls)
@step
async def handle_tool_calls(
self, ctx: Context, ev: ToolCallEvent
) -> InputEvent:
tool_calls = ev.tool_calls
tools_by_name = {tool.metadata.get_name(): tool for tool in self.tools}
tool_msgs = []
sources = await ctx.store.get("sources", default=[])
# call tools -- safely!
for tool_call in tool_calls:
tool = tools_by_name.get(tool_call.tool_name)
additional_kwargs = {
"tool_call_id": tool_call.tool_id,
"name": tool.metadata.get_name(),
}
if not tool:
tool_msgs.append(
ChatMessage(
role="tool",
content=f"Tool {tool_call.tool_name} does not exist",
additional_kwargs=additional_kwargs,
)
)
continue
try:
tool_output = tool(**tool_call.tool_kwargs)
sources.append(tool_output)
tool_msgs.append(
ChatMessage(
role="tool",
content=tool_output.content,
additional_kwargs=additional_kwargs,
)
)
except Exception as e:
tool_msgs.append(
ChatMessage(
role="tool",
content=f"Encountered error in tool call: {e}",
additional_kwargs=additional_kwargs,
)
)
# update memory
memory = await ctx.store.get("memory")
for msg in tool_msgs:
memory.put(msg)
await ctx.store.set("sources", sources)
await ctx.store.set("memory", memory)
chat_history = memory.get()
return InputEvent(input=chat_history)

就这样!让我们稍微探索一下我们编写的工作流程。

prepare_chat_history(): 这是我们的主要入口点。它负责将用户消息添加到内存中,并使用内存获取最新的聊天记录。它返回一个InputEvent

handle_llm_input(): 由InputEvent触发,它使用聊天记录和工具来提示大语言模型。如果发现工具调用,则发出ToolCallEvent。否则,我们认为工作流程已完成并发出StopEvent

handle_tool_calls(): 由 ToolCallEvent 触发,它会调用工具并处理错误,然后返回工具输出。此事件会触发一个循环,因为它会发出一个 InputEvent,这将我们带回到 handle_llm_input()

注意:使用循环时,我们需要留意运行时间。这里我们设置了120秒的超时限制。

from llama_index.core.tools import FunctionTool
from llama_index.llms.openai import OpenAI
def add(x: int, y: int) -> int:
"""Useful function to add two numbers."""
return x + y
def multiply(x: int, y: int) -> int:
"""Useful function to multiply two numbers."""
return x * y
tools = [
FunctionTool.from_defaults(add),
FunctionTool.from_defaults(multiply),
]
agent = FuncationCallingAgent(
llm=OpenAI(model="gpt-4o-mini"), tools=tools, timeout=120, verbose=True
)
ret = await agent.run(input="Hello!")
Running step prepare_chat_history
Step prepare_chat_history produced event InputEvent
Running step handle_llm_input
Step handle_llm_input produced event StopEvent
print(ret["response"])
assistant: Hello! How can I assist you today?
ret = await agent.run(input="What is (2123 + 2321) * 312?")
Running step prepare_chat_history
Step prepare_chat_history produced event InputEvent
Running step handle_llm_input
Step handle_llm_input produced event ToolCallEvent
Running step handle_tool_calls
Step handle_tool_calls produced event InputEvent
Running step handle_llm_input
Step handle_llm_input produced event ToolCallEvent
Running step handle_tool_calls
Step handle_tool_calls produced event InputEvent
Running step handle_llm_input
Step handle_llm_input produced event StopEvent

默认情况下,该工作流每次运行时都会创建一个新的 Context。这意味着聊天记录在运行之间不会被保留。但是,我们可以将自己的 Context 传递给工作流以保留聊天记录。

from llama_index.core.workflow import Context
ctx = Context(agent)
ret = await agent.run(input="Hello! My name is Logan.", ctx=ctx)
print(ret["response"])
ret = await agent.run(input="What is my name?", ctx=ctx)
print(ret["response"])
Running step prepare_chat_history
Step prepare_chat_history produced event InputEvent
Running step handle_llm_input
Step handle_llm_input produced event StopEvent
assistant: Hello, Logan! How can I assist you today?
Running step prepare_chat_history
Step prepare_chat_history produced event InputEvent
Running step handle_llm_input
Step handle_llm_input produced event StopEvent
assistant: Your name is Logan.

使用从 .run() 方法返回的 handler,我们也可以访问流式事件。

agent = FuncationCallingAgent(
llm=OpenAI(model="gpt-4o-mini"), tools=tools, timeout=120, verbose=False
)
handler = agent.run(input="Hello! Write me a short story about a cat.")
async for event in handler.stream_events():
if isinstance(event, StreamEvent):
print(event.delta, end="", flush=True)
response = await handler
# print(ret["response"])
Once upon a time in a quaint little village, there lived a curious cat named Whiskers. Whiskers was no ordinary cat; he had a beautiful coat of orange and white fur that shimmered in the sunlight, and his emerald green eyes sparkled with mischief.
Every day, Whiskers would explore the village, visiting the bakery for a whiff of freshly baked bread and the flower shop to sniff the colorful blooms. The villagers adored him, often leaving out little treats for their favorite feline.
One sunny afternoon, while wandering near the edge of the village, Whiskers stumbled upon a hidden path that led into the woods. His curiosity piqued, he decided to follow the path, which was lined with tall trees and vibrant wildflowers. As he ventured deeper, he heard a soft, melodic sound that seemed to beckon him.
Following the enchanting music, Whiskers soon found himself in a clearing where a group of woodland creatures had gathered. They were having a grand celebration, complete with dancing, singing, and a feast of berries and nuts. The animals welcomed Whiskers with open paws, inviting him to join their festivities.
Whiskers, delighted by the warmth and joy of his new friends, danced and played until the sun began to set. As the sky turned shades of pink and orange, he realized it was time to return home. The woodland creatures gifted him a small, sparkling acorn as a token of their friendship.
From that day on, Whiskers would often visit the clearing, sharing stories of the village and enjoying the company of his woodland friends. He learned that adventure and friendship could be found in the most unexpected places, and he cherished every moment spent in the magical woods.
And so, Whiskers continued to live his life filled with curiosity, laughter, and the warmth of friendship, reminding everyone that sometimes, the best adventures are just a whisker away.