高级表格教程

For standard datasets that are represented as tables (stored as CSV file, parquet from database, etc.), AutoGluon can produce models to predict the values in one column based on the values in the other columns. With just a single call to fit(), you can achieve high accuracy in standard supervised learning tasks (both classification and regression), without dealing with cumbersome issues like data cleaning, feature engineering, hyperparameter optimization, model selection, etc.

Multi-Label Prediction

如何预测数据表中的多列。

tabular-multilabel.html
Kaggle Tutorial

使用AutoGluon参加Kaggle竞赛,处理表格数据。

tabular-kaggle.html
Training models with GPU support

如何使用GPU支持训练模型。

tabular-gpu.html
Adding a Custom Metric

如何向AutoGluon添加自定义指标。

tabular-custom-metric.html
Adding a Custom Model

如何将自定义模型添加到AutoGluon。

tabular-custom-model.html
Adding a Custom Model (Advanced)

如何向AutoGluon添加自定义模型(高级)。

tabular-custom-model-advanced.html
Deployment Optimization

关于优化预测器工件以进行生产部署的教程。

tabular-deployment.html