KMeansSMOTE#

class imblearn.over_sampling.KMeansSMOTE(*, sampling_strategy='auto', random_state=None, k_neighbors=2, n_jobs=None, kmeans_estimator=None, cluster_balance_threshold='auto', density_exponent='auto')[source]#

在使用SMOTE进行过采样之前应用KMeans聚类。

这是[1]中描述的算法的实现。

更多内容请参阅用户指南

在版本0.5中添加。

Parameters:
sampling_strategyfloat, str, dict or callable, default=’auto’

用于重新采样数据集的采样信息。

  • float时,它对应于重采样后少数类样本数量与多数类样本数量的期望比率。因此,比率表示为\(\alpha_{os} = N_{rm} / N_{M}\),其中\(N_{rm}\)是重采样后少数类样本的数量,\(N_{M}\)是多数类样本的数量。

    警告

    float 仅适用于二分类。对于多类分类会引发错误。

  • str 时,指定重采样所针对的类别。不同类别中的样本数量将被均衡化。可能的选择有:

    'minority': 仅对少数类进行重采样;

    'not minority': 对除少数类之外的所有类进行重采样;

    'not majority': 重新采样除多数类之外的所有类;

    'all': 对所有类别进行重采样;

    'auto': 等同于 'not majority'.

  • dict时,键对应于目标类别。值对应于每个目标类别所需的样本数量。

  • 当可调用时,函数接受 y 并返回一个 dict。键对应于目标类别。值对应于每个类别所需的样本数量。

random_stateint, RandomState instance, default=None

控制算法的随机化。

  • 如果是整数,random_state 是随机数生成器使用的种子;

  • 如果 RandomState 实例,random_state 是随机数生成器;

  • 如果 None,随机数生成器是 np.random 使用的 RandomState 实例。

k_neighborsint or object, default=2

用于定义样本邻域的最近邻,以生成合成样本。您可以传递:

  • 一个int,对应于要使用的邻居数量。在这种情况下,将拟合一个~sklearn.neighbors.NearestNeighbors实例。

  • 一个兼容的最近邻算法实例,应该实现kneighborskneighbors_graph两种方法。例如,它可以对应于NearestNeighbors,但也可以扩展到任何兼容的类。

n_jobsint, default=None

在交叉验证循环中使用的CPU核心数量。 None 表示1,除非在 joblib.parallel_backend 上下文中。 -1 表示使用所有处理器。更多详情请参见 术语表

kmeans_estimatorint or object, default=None

一个KMeans实例或要使用的聚类数量。默认情况下,我们使用了MiniBatchKMeans,它通常在样本数量较大时表现更好。

cluster_balance_threshold“auto” or float, default=”auto”

集群被称为平衡的阈值,以及为SMOTE选择的类别的样本将被过采样的地方。如果设置为“auto”,这将由每个类别的比例决定,或者可以手动设置。

density_exponent“auto” or float, default=”auto”

此指数用于确定集群的密度。将其设置为“auto”将使用基于特征长度的指数。

Attributes:
sampling_strategy_dict

包含用于采样数据集信息的字典。键对应于从中采样的类标签,值是要采样的样本数量。

kmeans_estimator_estimator

在应用SMOTE之前使用的拟合聚类方法。

nn_k_estimator

在SMOTE中使用的拟合k-NN估计器。

cluster_balance_threshold_float

fit期间用于调用平衡集群的阈值。

n_features_in_int

输入数据集中的特征数量。

在版本0.9中添加。

feature_names_in_ndarray of shape (n_features_in_,)

fit期间看到的特征名称。仅在X具有全部为字符串的特征名称时定义。

在版本0.10中添加。

另请参阅

SMOTE

使用SMOTE进行过采样。

SMOTENC

使用SMOTE对连续和分类特征进行过采样。

SMOTEN

使用专门针对分类特征的SMOTE变体进行过采样。

SVMSMOTE

使用SVM-SMOTE变体进行过采样。

BorderlineSMOTE

使用Borderline-SMOTE变体进行过采样。

ADASYN

使用ADASYN进行过采样。

参考文献

[1]

Felix Last, Georgios Douzas, Fernando Bacao, “基于K-Means和SMOTE的不平衡学习过采样” https://arxiv.org/abs/1711.00837

示例

>>> import numpy as np
>>> from imblearn.over_sampling import KMeansSMOTE
>>> from sklearn.datasets import make_blobs
>>> blobs = [100, 800, 100]
>>> X, y  = make_blobs(blobs, centers=[(-10, 0), (0,0), (10, 0)], random_state=0)
>>> # Add a single 0 sample in the middle blob
>>> X = np.concatenate([X, [[0, 0]]])
>>> y = np.append(y, 0)
>>> # Make this a binary classification problem
>>> y = y == 1
>>> sm = KMeansSMOTE(
...     kmeans_estimator=MiniBatchKMeans(n_init=1, random_state=0), random_state=42
... )
>>> X_res, y_res = sm.fit_resample(X, y)
>>> # Find the number of new samples in the middle blob
>>> n_res_in_middle = ((X_res[:, 0] > -5) & (X_res[:, 0] < 5)).sum()
>>> print("Samples in the middle blob: %s" % n_res_in_middle)
Samples in the middle blob: 801
>>> print("Middle blob unchanged: %s" % (n_res_in_middle == blobs[1] + 1))
Middle blob unchanged: True
>>> print("More 0 samples: %s" % ((y_res == 0).sum() > (y == 0).sum()))
More 0 samples: True

方法

fit(X, y, **params)

检查采样器的输入和统计信息。

fit_resample(X, y, **params)

重新采样数据集。

get_feature_names_out([input_features])

获取转换的输出特征名称。

get_metadata_routing()

获取此对象的元数据路由。

get_params([deep])

获取此估计器的参数。

set_params(**params)

设置此估计器的参数。

fit(X, y, **params)[source]#

检查采样器的输入和统计信息。

在所有情况下,您都应该使用 fit_resample

Parameters:
X{array-like, dataframe, sparse matrix} of shape (n_samples, n_features)

数据数组。

yarray-like of shape (n_samples,)

目标数组。

Returns:
selfobject

返回实例本身。

fit_resample(X, y, **params)[source]#

重新采样数据集。

Parameters:
X{array-like, dataframe, sparse matrix} of shape (n_samples, n_features)

包含需要采样的数据的矩阵。

yarray-like of shape (n_samples,)

X中每个样本对应的标签。

Returns:
X_resampled{array-like, dataframe, sparse matrix} of shape (n_samples_new, n_features)

包含重采样数据的数组。

y_resampledarray-like of shape (n_samples_new,)

X_resampled 对应的标签。

get_feature_names_out(input_features=None)[source]#

获取转换的输出特征名称。

Parameters:
input_featuresarray-like of str or None, default=None

输入特征。

  • 如果 input_featuresNone,则使用 feature_names_in_ 作为特征名称。如果 feature_names_in_ 未定义,则生成以下输入特征名称: ["x0", "x1", ..., "x(n_features_in_ - 1)"]

  • 如果 input_features 是类似数组的,那么 input_features 必须 与 feature_names_in_ 匹配,如果 feature_names_in_ 已定义。

Returns:
feature_names_outndarray of str objects

与输入特征相同。

get_metadata_routing()[source]#

获取此对象的元数据路由。

请查看用户指南了解路由机制的工作原理。

Returns:
routingMetadataRequest

一个封装路由信息的MetadataRequest

get_params(deep=True)[source]#

获取此估计器的参数。

Parameters:
deepbool, default=True

如果为True,将返回此估计器及其包含的子对象的参数。

Returns:
paramsdict

参数名称映射到它们的值。

set_params(**params)[source]#

设置此估计器的参数。

该方法适用于简单的估计器以及嵌套对象(如Pipeline)。后者具有__形式的参数,以便可以更新嵌套对象的每个组件。

Parameters:
**paramsdict

估计器参数。

Returns:
selfestimator instance

估计器实例。

使用imblearn.over_sampling.KMeansSMOTE的示例#

比较过采样采样器

Compare over-sampling samplers